
Solutions to the problems
Solutions to Chapter 1
Solution 1.1.

(a) The second definition is not correct. Notice, e.g., that according to that
definition the pseudospectra would be a closed set. The definition is corrected
by replacing ≤ with <, namely

σε :=
{
z ∈ C such that z ∈ σ(A+ E) with E ∈ Cn×n and ‖E‖ < ε

}
.

(b) Let us denote by σ
(1)
ε (A) and σ

(2)
ε (A) the pseudospectra according to the

first and second definition. Observe that σ(1)
ε (A) ∩ σ(2)

ε (A) 6= ∅ since if
z ∈ σ(A) then one can trivially verity that z ∈ σ

(1)
ε (A) ∩ σ(2)

ε (A). We
therefore assume that z /∈ σ(A). We start showing that σ(1)

ε (A) ⊆ σ(2)
ε (A).

Let z ∈ σ(1)
ε (A) \ σ(A), by definition of matrix norm, there exist v, u ∈ Cn

such that ‖v‖ = ‖u‖ = 1 and (z − A)−1v = α−1u. This implies that
zu − Au = αv. We can construct E = αvwH , with wHu = 1, such that
Eu = αv and ||E|| = α < ε 1. Hence, it exists E ∈ Cn×n such that ‖E‖ < ε
and zu − Au = Eu, which implies z ∈ σ(A + E), ||E|| < ε, and therefore
we conclude that z ∈ σ(2)

ε (A). We now show that σ(2)
ε (A) ⊆ σ

(1)
ε (A). Let

us assume z ∈ σ(2)
ε (A) \ σ(A). By definition there exists E ∈ Cn×n such

that ‖E‖ < ε and z ∈ σ(A + E). Therefore there exists v ∈ Cn such
that ‖v‖ = 1 and (z − A)v = Ev and than v = (z − A)−1Ev. By using
the Hölder’s inequality 1 = ‖v‖ ≤ ‖(z − A)−1‖‖E‖ that directly implies
‖(z −A)−1‖ > ‖E‖−1 > ε−1, and therefore we conclude that z ∈ σ(1)

ε (A).

Solution 1.2. By the second definition in Problem 1.1

σε(A) :=
{
z ∈ C such that z ∈ σ(A+ E) with E ∈ Cn×n and ‖E‖ < ε

}
Let us denote by σ̃ε(A) the definition of pseudospectra given in this problem.
We show that σε(A) ⊆ σ̃ε(A). Let z ∈ σε(A), then there exists E ∈ CN×N with
‖E‖ < ε such that z ∈ σ(A + E). Let v be the corresponding eigenvector such
that ‖v‖ = 1. We have (A + E)v = zv that can be written as (zI − A)v = Ev.
Hence ‖(zI − A)v‖ = ‖Ev‖ ≤ ‖E‖‖v‖ = ‖E‖ < ε. Thus for z ∈ σε(A) we have
that ‖(zI −A)v‖ < ε for some 0 6= v ∈ CN with ‖v‖ = 1, namely z ∈ σ̃ε(A). The
other inclusion σ̃ε(A) ⊆ σε(A) is trivial.

Solution 1.3. Observe that the matrix K is the stiffness matrix and not the
“eliminated stiffness matrix”, therefore it may be singular or ill-conditioned.

1If || · || is the 2-norm, then w = uH . For other arbitrary norms, the existence of w is
equivalent to the existence of a corresponding linear functional L on Cn such that L(u) = 1 and
‖L‖ = 1, which is guaranteed by the Hahn–Banach theorem.
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138 SOLUTIONS TO THE PROBLEMS

(a) The 50 largest and 50 smallest eigenvalues can be computed in MATLAB
with eigs. The smallest eigenvalues have absolute value proportional to
machine precision, i.e., the matrix K is numerically singular. The largest
eigenvalues are contained in the interval [0.0027, 0.0522] and are not clustered.
Therefore, Corollary 1.4 gives a very slow convergence rate since there are
eigenvalues extremely close to zero and the largest eigenvalue is 0.0522. By
directly using Theorem 1.2, since the eigenvalues in [0.0027, 0.0522] are not
clustered, we expect the convergence to happen, at least after 51 iterations.
This lower bound on the number of steps is obtained by considering, in
Theorem 1.2, the polynomial that is has one root in zero and the other roots
correspond to the 50 largest eigenvalues of K.

(b) The linear system (K − I)x = b can efficiently be solved with GMRES. The
matrix (K − I) has the same eigenvalues as K shifted with −1. Thus, given
the eigenvalue spread above, we can conclude that the eigenvalues of (K − I)
will be spread very close to −1. With the disc reasoning in Corollary 1.4
we then get that ‖rm‖

‖r0‖ ≤
(
ρ
c

)m with ρ ≤ 0.06 and c = 1. Thus in at most 7
iterations the error is below 10−8. In Figure 1.4 we plot the convergence of
a 100 iterations with GMRES for K, (K − I), and (K − 0.03I). The last
one also gives good convergence, since the eigenvalues are still clustered, but
not too much around zero.
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Figure 1.4: GMRES applied to shifted systems.
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We see the poor convergence for K. But for the shifted linear system we
have good convergence (although there exists some shifts, like for example
(K − 0.01I) that gives worse, but perhaps acceptable, convergence).

Solution 1.4.

(a) We start by showing that cσε(A) ⊆ σ|c|ε(cA). By definition cσε(A) = {z =
cx |x ∈ σε(A)}. Therefore, let z ∈ cσε(A) we can express z = cx with x such
that ‖(xI − A)−1‖ > ε−1. This implies that z fulfills ‖( zc − A)−1‖ > ε−1,
which can be further simplified to ‖(z−cA)−1‖ > (|c|ε)−1. Thus we conclude
that z ∈ σ|c|ε(cA). We now show that σ|c|ε(cA) ⊆ cσε(A). Let z ∈ σ|c|ε(cA)
we have ‖(z−|c|A)−1‖ > (|c|ε)−1 that can be rewritten as ‖( zc −A)−1‖ > ε−1

and then we conclude z ∈ cσε(A).

(b) Theorem 2.2 in [258] states that if the norm is the 2-norm, then the equality
is true if and only if A is normal. The equality obviously fails for the simplest
type of Jordan blocks of size 2x2. Consider

A =
(

1 1
0 1

)
,

which has a double eigenvalue in 1. Perturb it with

E =
(

0 0
ε 0

)
.

Then we can see that σ(A+E) = {1±√ε}, which for an ε < 1 is outside of
σ(A) +Dε because in this case

√
ε > ε. Therefore we conclude that σ(A+

E) 6⊆ σ(A)+Dε. We now prove the inclusion σ(A)+Dε ⊆ σε(A). We consider
the following equivalent definition of pseudo-spectra, see Problem 1.1,

σε(A) :=
{
z ∈ C such that z ∈ σ(A+ E) with E ∈ Cn×n and ‖E‖ ≤ ε

}
.

Let consider z ∈ σ(A) +Dε. We can express z = λ+ δ where λ ∈ σ(A) and
|δ| < ε. Observe that, for the specific choice E = δI, we have that ‖E‖ < ε
and λ+ δ ∈ σ(A+ E) ⊆ σε(A).

c) This is not true. Consider the 2-norm, and A and B normal. Then by the
above cited theorem σε(A) = σ(A) + Dε and σε(B) = σ(B) + Dε. Thus
σε(A)+σε(B) = σ(A)+Dε+σ(B)+Dε = σ(A+B)+2Dε = σ(A+B)+D2ε
which is not equal to σε(A+B) = σ(A+B) +Dε.
In other words, one could say that when constructing σε(A) and σε(B)
separately, one can do a maximal and constructive perturbation in the
eigenvalue corresponding to the same eigenvector for both A and B and thus
get a larger total perturbation in the sum, than one could do on the matrix
A+B.
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Solution 1.5. This problem contains a very important message: the pseudospectra
contain information about the eigenvectors. Two matrices may have the same
eigenvalues but different pseudospectra and in general, the sensitivity of the
eigenvalues is described in function of the eigenvectors, see [140, Ch. 7.2]. Therefore,
it is not enough to know the spectrum of a matrix in order to fully describe the
behavior of GMRES.

(a) In Figure 1.5 is displayed the pseudospectra of A for n = 12 whereas in
Figure 1.6 the pseudospectra of S.
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Figure 1.5: σε(A) for n = 12.
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Figure 1.6: σε(S) for n = 12.

In Figure 1.7 is displayed the pseudospectra of A for n = 21 whereas in
Figure 1.8 the pseudospectra of S.
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Figure 1.7: σε(A) for n = 21.
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Figure 1.8: σε(S) for n = 21.
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Notice that the eigenvalues of A and S are numerically different (even if by
construction they are mathematically the same). This is due to the fact that
the eigenvalues of S are too sensitive to small changes (ill-conditioned) and
MATLAB is not able to compute them in a stable way.

(b) Even if the matrix S is now constructed in a more stable way, all the
reasoning of the point (a) is still valid. We now consider n = 66.
In Figure 1.9 is displayed the pseudospectra of A generated as

pscont(A, 4, 500, [-80,0,-50,50],-10:1:1);)

whereas in Figure 1.10 the pseudospectra of S generated as

pscont(S, 4, 500, [-80,0,-50,50],-10:1:1);).
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Figure 1.9: σε(A) for n = 66.
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Figure 1.10: σε(S) for n = 66.

In Figure 1.11 we have the convergence of GMRES for A and in Figure 1.12
for S.
Clearly, for the matrix S, GMRES does not converge even if A and S
have the same eigenvalues. This is explained by the reasoning in (a). The
convergence of GMRES does not depend only on the eigenvalues but also
on their sensitivity, which is characterized by the eigenvectors). By using
the theory presented in the chapter, we can use the pseudospectra bound
for the convergence of GMRES we have

‖rm‖
‖r0‖

≤ Lε
2πε min

p∈Pm
0

max
Γε

|p(z)|

We can clearly see that for the matrix S the constant Lε is very large,
therefore the transient phase will be very long.
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Figure 1.11: GMRES applied to A.
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Figure 1.12: GMRES applied to S.

A short answer to this second part can be given by using the standard theory
for the convergence of GMRES. More precisely we have

‖rm‖
‖r0‖

≤ κ(VA) min
p∈Pm

0
max
λ∈σ(A)

|p(z)|

Where VA is the matrix containing as columns the eigenvectors of A. We
now compute the condition numbers κ(VA) = 1 and κ(VS) = 1.7572e+ 16

Conclusion: for GMRES we have that the asymptotic convergence is charac-
terized by the spectrum whereas the transient phase is depends on the sensitivity
of the eigenvalue (that is related to the eigenvectors) and it is characterized by
the pseudospectra.

Solution 1.6.

(a) Let A = ZΛZ−1 be an eigendecomposition. Since b is as a linear combination
of exactly m eigenvectors, we can write b = Zw where

wi =
{
wi 6= 0, 1 ≤ i ≤ m
0, m+ 1 ≤ i ≤ n

Note that we have assumed, without loss of generality, that them eigenvectors
we refer to occur as the first m columns of Z.
Hence, by using the RHS-bound in Theorem 1.5 we have,

||rm||
||r0||

≤ ||Z|| min
p∈P 0

m

(
m∑
i=1
|wi|2|p(λi)|2

)1/2

.
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From the above inequality we can make the upper bound zero by choosing p to
be a polynomial with at most m distinct roots/eigenvalues λi, i = 1, . . . ,m,
which we are allowed to do since

p ∈ P0
m.

Hence, we have 0 ≤ ||rm||/||r0|| ≤ 0 =⇒ rm = 0. This means that GMRES
will converge after a maximum of m = 10 iterations.

(b) Easy extension of the argument in (a).

Solution 1.7.

(a) We are given that A is diagonalizable as A = ZΛZ−1 and Zw = b/||b||.
Hence, substituting for A and b, we get,

p(A)b = p(ZΛZ−1)Zw||b|| = Zp(Λ)w||b|| (1.21)

Letting W = ||b||diag(w) =⇒ w||b|| = We, where e is a vector of all ones.
This leads to

Zp(Λ)w||b|| = Zp(Λ)We = ZWp(Λ)e (1.22)

Since multiplication of diagonal matrices is commutative. The combination
of (1.21) and (1.22) completes the proof.

(b) By replacing, in the minimization property of GMRES, p(A)b with the
equivalent expression computed in (a), we have,

||rm|| ≤ min
p∈P0

m

||ZWp(Λ)e|| ≤ ||Z|| min
p∈P0

m

||Wp(Λ)e||

Note that Wp(Λ)e is a vector whose i-th element is ‖b‖wip(λi), where wi
is the coefficient of the i-th eigenvector when b/||b|| is written as a linear
combination of the eigenvectors, i.e., columns of Z.

(c) The derivation in the paper is different in the following way:
Instead of assuming ZW = b/||b||, the assumption is ZW = r0/||r0||, where
r0 is the initial residual. (Note that here r0 = b if x0 = 0.)

Solution 1.8.

(a) The fast (red) curve relates to the structured right-hand side vector

b=zeros(n,1); b(50:60)=1;
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and the slow (black curve) relates to the random RHS.
The matrix A is a diagonalizable matrix (it is diagonal and hence trivially
diagonalizable). The eigenvectors are the corresponding unit vectors ei.
By considering Theorem 2.2 in [256], the GMRES bound can be written
as ‖rm‖

‖r0‖ ≤ minq∈Πmq(0)=1
(∑n

i=1 |wi|2|q(λi)|2
)1/2, where Πm is the set of

polynomials of degree max m, and wi is the the projection coefficient of
b (the RHS) onto the i-th basis vector in the eigenvector basis. For this
problem, that means that wi is simply the i-th component in the b, i.e.,
wi = bi. With that in mind, we can, for the structured b, rewrite the
bound as ‖rm‖

‖r0‖ ≤ minq∈Πmq(0)=1

(∑60
i=50 |q(λi)|2

)1/2
. Thus full convergence

is guaranteed in only 11 iterations. However, with a disc-reasoning based on
this bound we can say that ‖rm‖

‖r0‖ ≤
(
ρ
c

)m, where we can now take ρ = 5, and
c = 55, since the only eigenvalues involved in the last sum are 50, 51, . . . , 60.
Thus an error of 10−6 is reached in at most 6 iterations, which is exactly
what is observed in the figure.
This type of reasoning is not possible for a random RHS since in general we
will have wi 6= 0 for all i. Some eigenvalues can be “down prioritized”, but
that is still not giving the same acceleration and simple bounds to compute.
A simplified bound could be argued for by using 10 iterations to “remove”
the eigenvalues 1-10. Then a disc-argument on the rest would give something
like ρ = 40, and c = 50, which would give that after 10 + 40 = 50 iterations
the error would be bounded by 1.33 · 10−4. This is simplified behavior is
not exactly what is observed, but it goes somewhat along with the observed
convergence.

(b) If the RHS is changed (to b=zeros(n,1); b(90:100)=1;) the convergence
will be faster. One can do a similar argument as the one in a), both in terms
of only regarding some eigenvalues, and also the disc-reasoning. However,
this time the disc would be ρ = 5, and c = 95 and thus providing an error of
10−6 in at most 5 iterations. Compare the convergence rates 5/95 ≈ 0.053
and 5/55 ≈ 0.091.

Solution 1.9. By construction of the algorithm we have that zj = Mjvj (cf
Problem 1.10). Therefore, if Mj = M we can write Zm = MVm. By replacing
this expression in the Arnoldi-like factorization, we get

AZm = Vm+1Hm

AMVm = Vm+1Hm

Observe that this is an Arnoldi factorization for the preconditioned matrix AM .

Solution 1.10.

(a) Modifying the given code in this problem we come up with the solution
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n =200; e = ones(n ,1);
A = spdiags ([e 2*e e], -1:1, n, n);

b=rand(n ,1); norm_b =norm(b);
V(: ,1)=b/ norm_b ;
m=30; TOL = -inf;
M=@(j,b) BiCGSTABL (A,b,TOL ,j);

for j=1:m
Z(:,j)=M(j,V(:,j));
V(:,j+1)=A*Z(:,j);
h=V(: ,1:j) ’*V(:,j+1);
V(:,j+1)=V(:,j+1) -V(: ,1:j)*h;
g=V(: ,1:j) ’*V(:,j+1);
V(:,j+1)=V(:,j+1) -V(: ,1:j)*g;
H(1:j,j)=h+g;
H(j+1,j)=norm(V(:,j+1));
V(:,j+1)=V(:,j+1)/H(j+1,j);
e1=eye(j+1); e1=e1 (: ,1);
y=H\( norm_b *e1);
xx=Z(: ,1:j)*y;
err(j)=norm(A*xx -b);

end
semilogy (err);

The convergence is illustrated in Figure 1.13 in the curve (a).
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Figure 1.13: Converge of Flexible GMRES with BiCGSTABL as preconditioner.
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(b) The change in the script is minor. The only difference is that the precondi-
tioner is now defined by
M=@(j,b) BiCGSTABL(A,b,TOL,m-j+1);
and the convergence changes as illustrated in Figure 1.13 in the curve (b).

(c) Once again the change to the code is minor, and the preconditioner is defined
by

M=@(j,b) BiCGSTABL(A,b,TOL,m);

and the convergence changes as illustrated in Figure 1.13 in the curve (c).
We notice that the change from (b) is only minor, convergence is like one or
two iterations faster.

(d) A comparison with the two plots in (a) and (b) indicate that the convergence
is improved by starting out with a better preconditioner, rather than using a
good preconditioner in the end. The intuition is that a good preconditioner
will help capture the “good” subspace to search for the solution, and if that
is done in a better way early in the process, then a “better” subspace will
be built.
Further tests with with the FEM-matrix
nn = 50;
A = gallery (’wathen ’,nn ,nn);
n = size(A ,1);

and the random matrix
n = 200;
rng (123456789)
A = gallery (’uniformdata ’,n,n) - 4.5* eye(n,n);

yeild similar results.
Solution 1.11. The pseudocode for PCG is given in Algorithm 3. We now
consider M = LLT where L is the Cholesky factor. We explicitate M in the
expression for zj :

zj+1 = M−1rj+1 = (LLT )−1rj+1 = L−TL−1rj+1 = L−T r̃j+1

and from this we make explicit the inner products of βj :

βj = (rj+1, zj+1)
(rj , zj)

= (rj+1, L
−TL−1rj+1)

(rj , L−TL−1rj)
= (L−1rj+1, L

−1rj+1)
(L−1rj , L−1rj)

= (r̃j+1, r̃j+1)
(r̃j , r̃j)

and of αj : we want (Apj , pj) = (Ãp̃j , p̃j), where Ã = L−1AL−T .

(Apj , pj) = (AL−TLT pj , L−TLT pj) = (L−1AL−TLT pj , L
T pj) = (Ãp̃j , p̃j)

Now we can rewrite the steps of CG:



SOLUTIONS TO CHAPTER 1 147

• αj = (r̃j ,r̃j)
(Ãp̃j ,p̃j) ,

• By multiplying from the left by LT ,
LTxj+1 = LTxj + αjL

T pj ⇒ x̃j+1 = x̃j + αj p̃j .

• By multiplying from the left by L−1,
rj+1 = rj − αjApj ⇒ r̃j+1 = r̃j − αjL−1AL−TLT pj = r̃j − αjÃp̃j

• By multiplying from the left by LT ,
pj+1 = zj+1 + βjpj ⇒ p̃j+1 = LTL−T r̃j+1 + βj p̃j = r̃j+1 + βj p̃j

This is the CG corresponding to the system Ãx̃ = L−1b, where x̃ = LTx. In fact
the starting conditions is

r̃0 = L−1r0 = L−1b− L−1Ax0 = L−1b− L−1AL−TLTx0 = L−1b− Ãx̃

Solution 1.12. Let us assume (λ, x) is an eigenpair of M−1A. Then,

M−1Ax = λx⇔ AM−1(Mx) = λ(Mx)
⇔Ax = λLUx⇔ L−1AU−1(Ux) = λ(Ux)

Hence, M−1A, AM−1 and L−1AU−1 have identical eigenvalues with eigenvectors
x, Mx and Ux respectively.

Solution 1.13. We now point how to modify a FeNICS script for solving a PDE
in a way that the matrix and RHS is exported in a MATLAB format. Three script
examples in FeNICS, that can be used to reverse-engineering the whole process
and generalize to other PDEs, are available.

It is needed to add in the Python script the following lines (in the beginning):

• # to avoid reordering/permutations of the matrices
parameters[’reorder_dofs_serial’] = False

• # to save the matrices
from scipy.io import savemat

• parameters[’linear_algebra_backend’] = "Eigen"

After this, you can use FeNICS to define the PDE. Then you have to construct
the stiffness matrix, convert it to CSR data, extract the sparse array format and
save it in a format that MATLAB can read. In compact, this is done with the
following lines of code that you have to add at the end of the script

A, b = assemble_system(a, L, bc);
rows,cols,vals = as_backend_type(A).data() Get CSR data!
A = as_backend_type(A).sparray()!
b = as_backend_type(b).get_local()!
savemat(’Poisson.mat’, {’A’: A,’b’:b})!
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We now propose few example to illustrated how to create such matrices.
The files poisson membrane.py, poisson membrane 2.py and elesticity.py
are scripts in Python that generate a .mat file that you can load with MATLAB.
The .mat file contains matrix and RHS of the linear systems derived by a FEM
discretization of the associated PDE.

• Example 1: a standard Poisson problem poisson_membrane.py

• Example 2: a Poisson problem with a more challenging domain (square with
an hole in the middle) poisson_membrane_2.py

• Example 3: a 2d elasticity problem elesticity.py

If you do not have installed Fenics and you just want to see/test the matrices, just
load the files Poisson.mat, Poisson_2.mat, Elasticity.mat

Solution 1.14. Here is the procedure to export to MAT-files. Start the LiveLink
framework of COMSOL (for communication with MATLAB-process) by running:
$ module add comsol # Necessary at KTH
$ comsol server
Username : Myname
Password : Not important
Repeat password : Not important

Username and password can be chosen as you like.
Start MATLAB and run

>> addpath (’/usr/ local / comsol55 / multiphysics /mli ’);
>> mphstart
>> mphlaunch ;
>> model = mphopen (’blabla .mph ’)
>> MM= mphmatrix (model ,’sol1 ’,’out ’ ,{’K’});
>> size(MM.K)
>> K=MM.K;
>> save(’/tmp/ myfile .mat ’,’K’)

Observe: you may need to change addpath with the path where COM-
SOL was installed. The matrix capacitor_tunable_piezo_domain_K.mat
(K-matrix) of the MEMS device described here (https://www.comsol.com/
model/tunable-mems-capacitor-123) can generated following the procedure
above. A slight variation applied to the heat conductor problem gave:
disk_stack_heat_sink_52a.mat. We now consider the linear system with the
“eliminated stiffness matrix” from satellite.mph and a random right-hand side.
We test the iterative solvers GMRES and CG (observe that K is SPD).
model = mphopen (’satellite .mph ’);
MM= mphmatrix (model ,’sol1 ’,’out ’ ,{’Kc ’});
% Kc= eliminated Stiffness Matrix
K=MM.Kc;

n= length (K); b=rand(n ,1);

https://www.comsol.com/model/tunable-mems-capacitor-123
https://www.comsol.com/model/tunable-mems-capacitor-123
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[X,FLAG ,RELRES ,ITER , RESVEC ] = gmres (K,b,[],-Inf ,200) ;
[X,FLAG ,RELRES ,ITER , RESVEC2 ] = cgs(K,b,-Inf ,200) ;

semilogy ( RESVEC ); hold on
semilogy ( RESVEC2 )

The converge diagrams are illustrated in Figure 1.14.
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Figure 1.14: Convergence of GMRES and CG applied to the eliminated stiffness
matrix from satellite.mph.

Solution 1.15.
(a) By using (1.2) and that rm ∈ Km(A, b) we get

‖rm‖ = min
x∈Km(A,b)

‖Ax− b‖ = min
p∈P0

m

‖p(A)r0‖ ≤ min
p∈P0

m

‖p(A)‖‖r0‖

(b) By combining the previous result with the Cauchy integral formula we get
‖rm‖
‖r0‖

min
p∈P0

m

‖p(A)‖ ≤ min
p∈P0

m

1
2π

∥∥∥∥∮
Γε

p(z)(zI −A)−1dz

∥∥∥∥ .
We now use the well known inequality |

∮
Γ f(z)| ≤ Lmaxz∈Γ where L is the

length of Γ and we get
‖rm‖
‖r0‖

≤ 1
2π min

p∈P0
m

max
z∈Γε

‖p(z)‖max
Γε

‖(zI −A)−1‖
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We conclude by using the definition of pseudospectra, see Problem 1.1, that
gives maxΓε

‖(zI −A)−1‖ < 1/ε.

Solution 1.16. By using (1.2) we have

‖rm‖ = min
p∈P0

m

‖p(A)r0‖.

From the above expression, by dividing by r0, and with several algebraic manipu-
lations we get

‖rm‖
‖r0‖

≤ min
p∈P0

m

‖p(A)w‖ = min
p∈P0

m

‖KK−1p(A)KK−1w‖

≤ ‖K‖‖K−1w‖ min
p∈P0

m

‖K−1p(ZΛZ−1)K‖

≤ ‖K‖‖K−1w‖ min
p∈P0

m

‖(Z−1K)−1p(Λ)(Z−1K)‖

≤ ‖K‖‖K−1w‖ cond(K−1Z) min
p∈P0

m

‖p(Λ)‖

≤ ‖K‖‖K−1w‖ cond(K−1Z) min
p∈P0

m

max
λ∈σ(A)

|p(λ)|.

Solution 1.17. Let em ∈ Cn be the m-th vector of the canonical basis, the
orthogonal basis of the Krylov space and the matrix Hm fulfill the following
relation, often referred to as “Arnoldi factorization”

AQm = QmHm + hm+1,mqm+1e
H
m

Let (θ, z) an eigenpair of Hm then we have

AQmz = QmHmz + hm+1,mqm+1e
H
mz

AQmz = θQmz + hm+1,mqm+1e
H
mz.

By using that the orthogonality of Qm, i.e., QHmQm = I, we get

AQmz = θQmz + hm+1,mvm+1e
H
mQ

H
mQmz

(A− hm+1,mqm+1e
H
mV

H
m )Qmz = θQmz

The last equation tells us that θ is an eigenvalue, with eigenvector Qmz, of
a perturbation of the matrix A. More precisely is an eigenvalue of A + E
with E = hm+1,mqm+1e

H
mQ

H
m. By using that Qm is orthogonal we get ‖E‖ =

‖hm+1,mqm+1e
T
mQ

H
m‖ = hm+1,m, i.e., θ ∈ σHm

(A).

Solution 1.18. We consider the following equivalent definition of pseudospec-
tra [258, pag. 16] which is easly deducible from the first definition in Problem 1.1

σε(A) = {z ∈ C s.t. ∃ v ∈ C, ‖v‖ = 1, ‖(zI −A)v‖ < ε} .



SOLUTIONS TO CHAPTER 2 151

Let z ∈ σε(A), we want to prove that this vector can be written as z = y+x where
y ∈W (A) and ‖x‖ < ε, i.e., x ∈ Dε. From the definition, there exists a vector v
with unitary norm such that ‖(zI − A)v‖ < ε. Let us define w := vH(zI − A)v,
then

w = zvHv − vHAv = z‖v‖22 − vHAv = z − vHAv
hence z = w+ vHAv = w+u where ‖w‖2 ≤ ‖vH‖2‖(zI −A)v‖2 < ε, i.e., w ∈ Dε,
and u ∈W (A). This directly implies σε(A) ⊆W (A) +Dε.

Solution 1.19. The condition P ≈ A−1 is a sufficient condition for P to be a
good preconditioner, but it is not necessary. There are good preconditioners that
do not fulfill this property. Let us assume P 6≈ A−1. The matrix P is a good
preconditioner if P−1A have eigenvalues inside a disc, with a small radius, that
does not intersect the origin. Relate this to the Corollary 1.4. Or more in general,
P is a good preconditioner if P−1A have eigenvalues clustered around few points.
Relate this to Theorem 1.2.

Solution 1.20. The preconditioned matrix is Ã = P−1A = P−1MP and it holds

m∑
j=0

Ãj =
m∑
j=0

P−1M jP = P−1

 m∑
j=0

M j

P = I,

namely q(Ã) = 0 with q(λ) = 1−∑m
j=1 λ

j . The thesis follows by (1.2), i.e., due
to the minimization property of GMRES, the residual can be expressed as

‖rm‖ = min
p∈P0

m

‖p(Ã)r0‖ ≤ ‖q(Ã)r0‖ = 0.

Solutions to Chapter 2
Solution 2.1. Let consider the following split of the matrix A given by A = M−N .
It is possible to construct the iterative methods by observing that the linear system
Ax = b can written as Mx − Nx = b. More precisely, the idea of the iterative
methods discussed in this chapter consists of the using the previous equation for
generating a sequence of vectors as Mxk+1 = Nxk + b.

(a) – The Jacobi iteration uses the splitting A = D − C, where D is the
diagonal and C is the rest of the matrix. Then MJ = D, and NJ = C.

– The Gauss–Seidel iteration uses the splitting A = D − L− U , where
D is the diagonal and L,U are the lower and upper strictly triangular
parts of the matrix. Then MGS = D − L, and NGS = U .

– The Successive Over-Relaxation method uses the splitting A = D−L−
U , for the scaled problem ωAx = ωb. The splitting used is ωMSOR =
D − ωL, and ωNSOR = (1− ω)D + ωU .
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(b) The convergence of these methods can be studied by seeing these as fixed
point iterations. The generic method is of the form (if M is invertible)

xk+1 = M−1Nxk +M−1b (2.23)

which is a fixed point iteration to which the fixed point is a solution to the
original linear system according that the discussion above. Let us denote by
x? the fixed point, the error can be computed by iteratively using (2.23) as
follows

x? − xk+1 = M−1Nx? +M−1b−M−1Nxk −M−1b

= (M−1N)(x? − xk)
= . . .

= (M−1N)k(x? − x0)

This tells us that the error goes to zero if and only if ρ(M−1N) < 1, i.e.,
(M−1N)k → 0 for k →∞.
For Jacobi iteration, this condition is fulfilled if, e.g., the matrix is diagonally
dominant. For Gauss–Seidel, this condition is fulfilled if, e.g., the matrix
is symmetric and positive definite. The Successive Over-Relaxation is a
modification of Gauss–Seidel, created to achieve faster convergence, so the
conditions on the convergence are the same as Gauss–Seidel.

(c) We prove the claim by induction. By assumption we have x−1 = 0, then
x0 = M−1Nx−1 +M−1b = M−1b and y0 = z0 = M−1b, hence y0 = x0, i.e.,
the base of the induction is verified. Let us assume that xk = yk and we
perform the induction step.

xk+1 = M−1Nxk +M−1b = M−1Nyk +M−1b

= M−1N

(
k∑
i=0

zi

)
+M−1b

= M−1b+
k∑
i=0

M−1Nzi = z0 +
k∑
i=0

zi+1 =
k+1∑
i=0

zi = yk+1

Solution 2.2.

(a) We consider A = M −N , where M is the diagonal part of A and −N has
the same entries of A except for zeros in the diagonal. Then

[
M−1N

]
i,j

=
{
ai,j/ai,i i 6= j

0 i = j
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and therefore, by using the diagonally dominance property of A, we have for
i = 1, . . . , n

n∑
j=1
|[M−1N ]i,j | =

n∑
j=1
j 6=i

∣∣∣∣ai,jai,i

∣∣∣∣ = 1
|ai,i|

n∑
j=1
j 6=i

|ai,j | < 1

Given the above reasoning, and by the Gershgorin localization theory,
see [159, Corollary 6.1.3], we conclude from the that M−1N has all its
eigenvalues located in a circle centered at 0 and with radius less than 1. This
in turn implies that ρ(M−1N) < 1, which implies that the Jacobi iteration
converges for diagonally dominant matrices.

(c) Consider (
1 3

0.1 1

)
︸ ︷︷ ︸

=:A

=
(

1 0
0 1

)
︸ ︷︷ ︸

:=M

−
(

0 −3
−0.1 0

)
︸ ︷︷ ︸

:=N

then A is not diagonally dominant, but ρ(M−1N) < 1, i.e., Jacobi converges.

Solution 2.3.

(a) A regular splitting of the matrix A is given by a pair of matrices M and
N such that M is invertible, M−1 and N have nonnegative elements and
A = M −N .

(b) An M -matrix can be defined in many equivalent ways. One of such ways
is the following. The matrix A is an M -matrix is invertible and A−1 has
non-negative elements.

(c) Theorem 4.4 in [237] tells us that if A is an M -matrix then a regular splitting
A = M −N is such that ρ(M−1N) < 1, in particular the iterative method
Mxk+1 = Nxk + b is convergent.

Solution 2.4. The following is the required MATLAB code
n =10000; e=ones(n ,1);
A= spdiags ([e e -5*e e e], -2:2, n, n);
b=sin(pi *(1:n) ’);

D=diag(diag(A)); E=-tril(A , -1); F=-triu(A ,1);
xs = A\b; x0=rand(n ,1);

% Jacobi
k = 1; x = x0;
eJ(k) = norm(xs -x);
while (eJ(k) >1e -5)

k = k+1;
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x = D\((E+F)*x+b);
eJ(k)=norm(xs -x);

end

% Gauss - Seidel
k=1; x=x0;
eGS(k) = norm(xs -x);
while (eGS(k) >1e -5)

k = k+1;
x = (D-E)\(F*x+b);
eGS(k) = norm(xs -x);

end

% hybrid
k=1; x=x0;
err(k) = norm(xs -x);
while (err(k) >1e -5)

k = k+1;
if rem(k ,2) ==0

% Jacobi
x=D\((E+F)*x+b);

else
% Gauss - Seidel
x=(D-E)\(F*x+b);

end
err(k) = norm(xs -x);

end

semilogy (eJ); hold on
semilogy (eGS)
semilogy (err)
legend ("J","GS","J+SG ");

The convergence of these methods is illustrated in Figure 2.4.
Solution 2.5.

(a, b) If the iterations converge to a vector v, this vector fulfills v = −Bv+a, namely
is the solution to the linear system (I +B)v = a. We can therefore test the
convergence by measuring the residual at the i-th iteration as ‖vi +Bvi−a‖.
The iterations converge to the solution for the first 8 iterations, then the
residual grows again. See Figure 2.5

(c) Theorem 11.2.1 in [140] states that the iterates converges for any starting
vector v0 if and only if ρ(−B) < 1. The eigenvalues of B are 1/10, 1/2 and
10 therefore we do not expect converge for a generic starting vector. Let us
denote by v the fixed point, i.e., v = −Bv + a, then it is possible to show by
induction that vk+1 − v = −B (vk − v). By using this relation is then clear
that, if v and v0 are linear combination of the eigenvectors associated with
the eigenvalues with module smaller then one, the iterations converge.

Solution 2.6. The convergence of Jacobi and Gauss–Seidel for the given problem
and starting vector x0 = [1, . . . , 1] is illustrated in Figure 2.6. If we use as
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Figure 2.4: Convergence for Jacobi, Gauss–Seidel and hybrid approach in Prob-
lem 2.4.

starting vector x0 = b both method converge in the first iteration. Indeed x = b
is a good approximation to the solution to the linear system, more precisely
‖Ab− b‖ ≈ 10−13.

Solution 2.7.

(a) The fixed point iteration (2.8) with the splitting A = M1 −N1 corresponds
to the Jacobi method.

(b) The matrix A is diagonally dominant and therefore Jacobi converges. See
Problem 2.2.

(c) The convergence of the two splittings is illustrated in Figure 2.7. Observe
that the second splitting has a faster convergence in terms of iteration count,
however each iteration is computationally more expensive with respect to
the first splitting. Indeed, in the second splitting M2 is tridiagonal and a
linear system with this matrix has to be solved at each iteration.

(d) It is possible to verify that A = M2 −N2 is a regular splitting and therefore
fixed point iteration (2.8) converges.

Solution 2.8. The forward SOR half-step is xk+1/2 = (D − ωE)−1(ωF + (1 −
ω)D)xk + ω(D − ωE)−1b and the following backward half-step is xk+1 = (D −
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Figure 2.5: Convergence iteration in Problem 2.5

ωF )−1(ωE+(1−ω)D)xk+1/2 +ω(D−ωF )−1b. By combining these two equations
we get

xk+1 = (D − ωF )−1(ωE + (1− ω)D)xk+1/2 + ω(D − ωF )−1b.

Reordering the terms we can be expressed as

xk+1 =(D − ωF )−1(ωE + (1− ω)D)(D − ωE)−1

(ωF + (1− ω)D)xk + ω(D − ωF )−1[
(ωE + (1− ω)D)(D − ωE)−1 + I

]
b.

which is equivalent to xk+1 = Gωxk + fω where

Gω = (D − ωF )−1(ωE + (1− ω)D)(D − ωE)−1(ωF + (1− ω)D),
fω = ω(D − ωF )−1 [(ωE + (1− ω)D)(D − ωE)−1 + I

]
b.

By using that xk+1 = M−1Nxk +M−1b we get M−1b = fω and therefore M−1 =
ω(D − ωF )−1 [(ωE + (1− ω)D)(D − ωE)−1 + I

]
. By further manipulating this

expression we can reduce it to M−1 = ω(2 − ω)(D − ωF )−1D(D − ωE)−1 and
therefore M = 1

ω(2−ω) (D − ωF )D−1(D − ωE).

Solution 2.9. (a) A central difference scheme for the final PDE results in the
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Figure 2.6: Convergence iteration in Problem 2.6 for the starting vector x0 =
[1, . . . , 1].

following finite difference equations

ui+1,j − 2ui,j + ui−1,j
h2 + ui,j+1 − 2ui,j + ui,j−1

h2 + k(xi, yi)ui,j = 1

for i, j = 1, . . . , n. If we assume row major ordering, then the first term
corresponds to a diagonally repeating tridiagonal matrix structure D ∈ Rn×n,
corresponding to the 1-D stencil [1/h2,−2/h2, 1/h2]. The second term
corresponds to a sum of a diagonal matrix and two off-diagonal matrices,
which can be seen as a repeating stretched D. Hence, in matrix form, the
sum of the first two terms is a pentadiagonal matrix which can be expressed
with the Kronecker products as M = D⊗ In + In⊗D and can be computed
in MATLAB as M=kron(D,I)+kron(I,D). The third term is just a diagonal
matrix obtained by vectorizing the discretization of the function k(x, y),
namely N = vec(K) where K = [k(xi, yj)]ni,j=1.

(b) n =100; e = ones(n ,1);
xx= linspace (-1,1,n); yy= linspace (-1,1,n); h=xx (2) -xx (1);
D = spdiags ([e -2*e e]/(hˆ2) ,[-1 0 1],n,n);
I = speye (n);
M = kron(D,I)+kron(I,D);
kk =1 e5; k=@(x,y) kk *(x.ˆ2+y.ˆ2 <1/10);
f=@(x,y) ones(size(x));



158 SOLUTIONS TO THE PROBLEMS

0 5 10 15 20 25 30 35 40
10−16

10−12

10−8

10−4

100

Iteration

R
es

id
ua

l

First splitting
Second splitting

Figure 2.7: Convergence iteration in Problem 2.7 with random starting guess.

[XX ,YY] = meshgrid (xx ,yy); KK=k(XX ,YY);
N = -spdiags (KK (:) , 0, nˆ2, nˆ2);
F= f(XX ,YY);
u=(M-N)\F(:); uu= reshape (u,n,n);
imagesc (xx ,yy ,uu); colorbar

In Figure 2.8 is illustrated the numerical solution to the PDE for n = 100
and k = 105.

(c) With the setting of (b) the iterative method Mxk+1 = Nxk + b does not
converge since ρ(M−1N) > 1. However, if the discretization paramenter
n is large enough and the penalty value k̃ is not too large, the splitting is
convergent.

(d) It is a trivial change of the previous part.

Solution 2.10. The following script is the implementation of the required iterative
methods. Observe that the first splitting corresponds to the Jacobi method.
n =1000; e = ones(n ,1);
A = spdiags ([e 5*e e], -1:1, n, n); A = Aˆ2;
b=rand(n ,1);

x0=rand(n ,1); mm =100;

% splitting 1
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Figure 2.8: Numerical solution to the PDE in problem 2.9.

M=diag(diag(A)); N=M-A;
norm(M\N ,1)
x = x0;
err1 (1)=norm(A*x-b);
for j=1: mm

x = M\(N*x+b);
err1(j+1)=norm(A*x-b);

end

% splitting 2
M=diag(diag(A))+diag(diag(A , -1) ,-1)+diag(diag(A ,1) ,1); N=M-A;
norm(M\N ,1)
x = x0;
err2 (1)=norm(A*x-b);
for j=1: mm

x = M\(N*x+b);
err2(j+1)=norm(A*x-b);

end

semilogy (err1); hold on
semilogy (err2)
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The convergence of the two iterative methods is illustrated in Figure 2.9. The
matrix A is pentadiagonal, we expect better performance from the second splitting
since the matrix M2 better approximate the matrix A. This is also confirmed by
the fact that ‖M−1

1 N1 ≈ 0.8162 whereas ‖M−1
2 N2 ≈ 0.2857.
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Figure 2.9: Convergence the two iterative methods in Problem 2.10.

Solution 2.11.
(a) function [ S ] = sparsity_pattern ( AA )

S = AA >0;
end

(b)
function [L, U] = sparse_lu (A)
n = size(A, 1); L = eye(n);
for k = 1 : n

AA=A(k:n,k:n); % select the proper submatrix
[˜, idx ]= sort(sum( sparsity_pattern (AA)) ,2, ’ascend ’);
AA=AA(idx ,idx);
A(k:n,k:n)=AA;
L(k + 1 : n, k) = A(k + 1 : n, k) / A(k, k);
for l = k + 1 : n
A(l, :) = A(l, :) - L(l, k) * A(k, :);
end

end
U = A;
end
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(c) The matrix A has the sparsity pattern in Figure 2.10. The sparsity pattern
of L factor and U factor for the sparse LU approach is shown in Figure 2.11
and Figure 2.12. The sparsity pattern of L factor and U factor for the
classic LU approach is shown in Figure 2.13 and Figure 2.14. By using the
naive sparse LU-factorization we are roughly able to reduce the number of
non-zero elements, with respect to the standard LU factorization, by half.

1 20 39 58 77 96 115 134 153 172 191
1

20

39

58

77

96

115

134

153

172

191

Figure 2.10: Random matrix.
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Figure 2.11: Sparse L factor.

1 40 79 118 157 196
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Figure 2.12: Sparse U factor.
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Figure 2.13: L factor.
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Figure 2.14: U factor.

(d) The matrix A is an arrow matrix, i.e., has the sparsity pattern in Figure 2.15.
The sparsity pattern of L factor and U factor for the sparse LU approach is
shown in Figure 2.16 and Figure 2.17. The sparsity pattern of L factor and
U factor for the classic LU approach is shown in Figure 2.18 and Figure 2.19.
By using the naive sparse LU-factorization we are roughly able to reduce the
number of non-zero elements, with respect to the standard LU factorization,
by half.

1 5 9
1

5

9

Figure 2.15: Random arrow matrix.

Solution 2.12. (a) Fill-in elements are zero elements of A that become nonzero
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Figure 2.16: Sparse L factor.
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Figure 2.17: Sparse U factor.
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Figure 2.18: L factor.
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Figure 2.19: U factor.

during a factorization. The level of fill of element (i, j) is defined as

levij =
{

0 if aij 6= 0 or i = j,

∞ otherwise.

A level of fill value of 1 indicates that the fill-in was generated by an original
element. Whereas a level of 2 means that it was generated by a fill-in caused
by an original element and so on. The rationale is that the level of fill should
indicate the size of the element and one of the ideas is that fill-in resulting
from other fill-in is less important.
To relate to graphs, if an element (i, j) has levij = p > 0 then this means
that an edge has been added to the original graph. The level of fill is also
related to graphs by various results in the literature, e.g. Theorem 10.7,
in [237]. After completing Gaussian elimination levij = p > 0 if and only if
there exist a fill path of length p+ 1 between node i and j.

(c) The sparsity pattern for the matrix A and the LU factors (which is the same)



164 SOLUTIONS TO THE PROBLEMS

and the sparsity pattern for the and the LU factors computed with LU(0) are
shown in Figure 2.20.

1 10 19 28 37 46
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28

37

46

1 10 19 28 37 46
1

10

19

28

37

46

Figure 2.20: Sparsity pattern of A and L+ U (is the same) obtained with IL(0)
on the left. Sparsity pattern of and L+ U computed with classic LU on the right.

(d) A naive function that computes the level of fill is given in the following MATALB
code
function [ LEV ] = LOFnaive ( A )
N = size(A ,2);
% Initialize LEV matrix
LEV = inf*ones(N,N);
for i=1:N

for j=1:N
if (A(i,j) ˜= 0 || i == j)

LEV(i,j) = 0;
end

end
end
% Compute level of fill
for(i=2:N)

for(k=1:i -1)
for(j=k:N)

LEV(i,j) = min(LEV(i,j), LEV(i,k) + LEV(k,j) + 1);
end

end
end
end

In Figure 2.21 is displayed the colormap of the output of the MATLAB function
applied to the given matrix. The color white corresponds to a level of fill value of
∞. The color code is not optimal but it gives some perspective the levels and of
which elements that would be removed if one would for instance use ILU(p).
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Figure 2.21: Colormap of the matrix obtained as output of LOFnaive.

Solution 2.13. Since M is a block diagonal matrix with the following structure

M =

B 0 0
0 B 0
0 0 B


the graph of M consists of three disjoint parts. An assumption for Algorithm 3.2
in [237] to work, is that the graph is connected. Otherwise one will end up in a
situation where Snew=∅, but seen 6= n, which is what will cause the infinite loop.
The algorithm moves forward by considering neighbors of visited nodes, but in
the case of a disconnected graph it is not possible to visit the whole graph by only
going to neighbors.

On the other hand, this will only happen when the graph is disconnected, and
that is equivalent with the matrix being block-diagonal. Thus one could solve the
different (disconnected) linear systems separately (in this case 3), and hence one
would be interested in doing the Cuthill-McKee ordering on each diagonal block
separately and do the LU-factorization on each block separately.

Conclusion: From a software perspective the pseudo-code in Algorithm 3.2
in [237] is not very nice since it can be stuck in an infinite loop. However, the
cases when this happens can be regarded as “lucky” cases.
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Solution 2.14. The proof is by induction and for k = 1 we have by definition of
the adjacency matrix that hi,j is non-zero if and only if there is a path of length 1
from node i to node j.

For the inductive step we assume the proposition is true for some value of
k ≥ 1. For ease of notation we let B = Hk+1 and C = Hk. The goal is now to
prove that the claim of the proposition is true also for B. Specifically we have
B = CH, and for element (i, j) we have

bij =
n∑
`=1

ci`h`j .

The elements of H and C are non-negative, and hence bij 6= 0 if and only if there
exists (at least) one ` such that ci` 6= 0 and h`j 6= 0. However, from the induction
hypothesis this is true if and only if there exists a path of length k from node i to
node ` and a path of length 1 from node ` to node j. However, in such case there
exists (at least) one path of length k + 1 from node i to node j.

Solution 2.15. We start by observing that any permutation matrix P can be
written as the product of transpositions. A transposition is essentially a very
simple permutation, interchanging only two indices. Moreover, a transposition
interchanging the indices i and j and can be expressed as an identity matrix with
rows i and j interchanged, i.e., the matrix T representing the transposition is all
zero except tkk = 1 for k = 1, 2, . . . , n and k 6= i, k 6= j, as well as ti,j = 1, and
tj,i = 1.

From this the proof follows by induction. If we can show that It is true for
a general transposition, that is, the graph of A and TATT are the same except
for relabelling of the nodes, then it will hold true for a general permutation
matrix P since P = T1T2 . . . Tm−1Tm, and thus PT = TTmT

T
m−1 . . . T

T
2 T

T
1 for some

transpositions T`, ` = 1, . . . ,m and some m.
Hence we compare the graphs of A and Ã = TATT for a general transposition

T . The multiplication with T will interchange row i and j, and the multiplication
with TT will interchange column i and j. Then we can observe that ak` = ãk` if k
and ` are not equal to i or j. Thus one can observe that any edge in the graph
of A not involving node i or node j is the same in the graph of Ã. Moreover,
ai` = ãj` and a`i = ã`j for ` not equal to i or j, as well as aii = ãjj , and similarly
with i and j changed. Thus one can observe that if an edge goes from node i in
the graph of A, there is a corresponding edge going from node j in the graph of Ã,
again similarly with i and j changed. Thus the graph of A and Ã are the same,
but the labelling of node i and j is interchanged. This concludes the proof.

Solution 2.16. The Cuthill–McKee algorithm can be seen to create level sets:
the ordered nodes are iteratively subdivided in their distance relative to the first
node. Hence from construction, each level set, except the first and the last, is a
graph separator. Let S` be the `-th level set; then the two graphs formed by the
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nodes of

V = S1 ∪ S2 ∪ · · · ∪ S`−1 and W = S`+1 ∪ · · · ∪ Sm,

together with the respective edges, are disconnected components since S` is a
graph separator and thus all the edges go through S`. Then if we, with a slight
abuse of notation, call the adjacency matrix for the partial graph V for V , and
correspondingly for W , we see that the adjacency matrix of the complete reordered
graph have the structure V ∗ 0

∗ S` ∗
0 ∗ W


where ∗ represents the edges between elements of S` and the two graphs V and
W . This is a block-tridiagonal structure and since this is true for all level sets
` = 1, . . . ,m, it is clear that the matrix reordered through Cuthill–McKee is block
tridiagonal.

Solution 2.17.

(a) The script solves the Helmoltz equation on a non-regular grid, with wavenum-
ber κ =

√
6 and homogeneous Dirichlet boundary condition. The function

space consits of standard Lagrangian elements of order 2.

(b,c) The Cuthill–McKee ordering is implemented in the function symrcm. If
Figure 2.22 and Figure 2.23 is shown the sparsity pattern of A before and
after the Cuthill–McKee ordering. In Figure 2.24 and Figure 2.25 is shown the
sparsity pattern of the factors L,U computed with the LU-method applied
to A without Cuthill–McKee ordering. In Figure 2.26 and Figure 2.27 is
shown the sparsity pattern of the factors L,U computed with the LU-method
applied to A with Cuthill–McKee ordering.
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Figure 2.22: Before symrcm.
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Figure 2.23: After symrcm.
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Figure 2.24: L factor.
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Figure 2.25: U factor.
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Figure 2.26: Sparse U factor.
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Figure 2.27: Sparse U factor.

(d) In Figure 2.28 is illustrated the convergence of GMRES with and without ILU
preconditioner.

Solution 2.18. We start performing the Gauss elimination. We denote by L(i)

and the U (i) the current matrix factorization. In particular in the beginning
L(0) = I (identity) and U (0) = A. In each iteration we have A = L(i)U (i) and at
the end of the Gaussian elimination L(5) will be lower triangular and U (5) upped
triangular.

In the 0-th iteration we have

L(0) =


×
×
×
×
×
×

 U (0) =


× × × ×
× ×

× × ×
× × × ×

× × ×
× × × ×


In the 1-th iteration we use the first row of U (0) to cancel the other nonzero
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Figure 2.28: Convergence GMRES in Problem 2.17.

elements in the first column (standard Gaussian elimination) and we store in L(1)

the coefficients for doing such operation and in U (1) the result of this cancellation.
Obviously setting to zero and element in the first column may potentially generate
fill-in in the other columns.

L(1) =


×
×

× ×
× ×

×
× ×

 U (1) =


× × × ×
× ×
× × × ×

× × × ×
× × ×
× × × ×


We continue with the same reasoning (with the second row we set to zero the
elements in the second column)

L(2) =


×
×

× ×
× × ×

×
× ×

 U (2) =


× × × ×
× ×
× × × ×
× × ×
× × ×
× × × ×


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L(3) =


×
×

× ×
× × × ×

× ×
× × ×

 U (3) =


× × × ×
× ×
× × × ×
× × ×
× × ×
× × ×



L(4) =


×
×

× ×
× × × ×

× × ×
× × × ×

 U (4) =


× × × ×
× ×
× × × ×
× × ×
× ×
× ×



L(5) =


×
×

× ×
× × × ×

× × ×
× × × × ×

 U (5) =


× × × ×
× ×
× × × ×
× × ×
× ×
×


Solution 2.19. The Incomplete LU factorization (ILU) is an approximation to
the LU factorization, which is obtained using the Gaussian Elimination algorithm
(GE) in a way that, instead of obtaining exactly L and U as in GE, one derives L
and U so that they satisfy a certain sparsity pattern P, so as to decreasing the
storage and computational cost of using L and U.

Let P be a zero-pattern

P ⊂ {(i, j) | i 6= j, 1 ≤ i, j ≤ n}

and let L1 be the matrix which applies the first step of GE, A1 = L1A. Then, we
only consider the matrix obtained by keeping the elements of A1 with zero-pattern
P , which means that the rest of the elements is subtracted and kept in the matrix
R1, so we get Ã1 = A1 + R1. We repeat the process: by apply one step of
GE to this matrix and then only keep the zero-pattern we get A2 = L2Ã1 and
Ã2 = A2 +R2. Just to make a point, let’s proceed with another step: A3 = L3Ã2
and Ã3 = A3 +R3, and then

Ã3 = L3L2L1A+ L3L2R1 + L3R2 +R3

= L3L2L1A+ L3L2L1R1 + L3L2L1R2 + L3L2L1R3

is obtained by noticing that the matrix L1 will correspond to the identity matrix
in the first row, thereby not affecting the first columns of the matrix it’s multiplied
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to. In general we have

Lk = I − 1
a

(k)
kk

(
0k

A(k + 1 : n, k)

)
eTk

Consequently, Ln−1 · · ·Lk+1Rk = Ln−1 · · ·L1Rk. We define L := (L3L2L1)−1

and R := R1 +R2 +R3, and we get Ã3 = L−1A+ L−1R. In general, after n− 1
steps, we get, analogously as before,

U = Ãn−1 = Ln−1Ln−2 · · ·L1A+ Ln−1Ln−2 · · ·L1(Rn−1 + · · ·+R1)
= L−1A+ L−1R

Then LU = A+R which gives A = LU −R.
In conclusion R represents the sum of all the elements subtracted to the matrix

after each GE step so that the zero-pattern P is satisfied.
ILU(0) is the ILU performed where the zero-pattern is the original sparsity

pattern of A. Hence, the matrices L and U will both have at most the same
sparsity pattern as A, but be lower and upper triangular respectively. OBS: this
does not guarantee that the pattern of LU will be the same as the pattern of A!
Rwill consequently be the matrix which will subtract the elements of LU which
do not belong to the sparsity pattern of A.

ILU(1) is as if the ILU was performed with P zero-pattern of the LU from the
ILU(0) run, which we call now LU. So now the new matrices L and U will have
at most the sparsity pattern of LU, and R, again, will be the matrix which will
subtract the elements of LU which do not belong to the sparsity pattern of A.

Solution 2.20. Where as ILU simply works by discarding the corresponding
elements in the zero pattern, where as the modified ILU tries to compensate
for the discarded elements. More precisely, what is called the MILU is, after
completing the k-iteration, modifying the diagonal element with the sum of the
dropped elements.

The arrangements of the algorithm is based on the IKJ-version of Gaussian
elimination, where the outer i-loop works on each row, the middle k-loop works
on the lower triangular part given an i (thus essentially doing the elimination
from “left to right”), and then for each i and k the j-loop works on modifying the
elements k + 1, k + 2, . . . , n in accordance with the elimination.

The result of the MILU-compensation operation is that the sum of each row is
kept constant. We still have the factorization A = LU −R , for a nonzero R, but
additionally we have that Ae = LUe, where e is a vector of ones. Note that this
does not affect the zero-pattern used, but only the actual values filled in. However,
the zero-pattern for R becomes different. One reason for doing this is that the
new operator A = LU , when stemming from a PDE, will behave correctly for
constant functions.

As a numerical comparison for the given matrix (with n = 3) the norm of
Ae− LUe for ILU(0) is 0.8474, and for MILU is 8.9509e− 16.
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Solutions to Chapter 3
Solution 3.1.

(a) The equation (3.21) can be solved analytically. More precisely, by computing
the roots of the characteristic equation λ2 +κ2 = 0, we get that the solutions
can be written as u(x) = Aeiκx + Be−iκx, and for κ real it can be further
simplified as u(x) = A sin(κx) + B cos(κx). The constants A and B are
computed by imposing the boundary conditions, which results in the following
linear system

A+B = u0

A sin(κ) +B cos(κ) = u1

(b) We fix the boundary conditions as u0 = 1 and u1 = 0. The solution to (3.21)
is plotted in Figure 3.3 for κ = 10 and Figure 3.4 for κ = 100. Clearly the
oscillations increase proportionally to κ.
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Figure 3.3: κ = 10.
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Figure 3.4: κ = 100.

The following MATLAB script illustrates how to compute the numerical
solution with FD.
n =100; % number of discretization points
kk =30; % wavenumber

xx= linspace (0,1,n); h=xx (2) -xx (1);
e=ones(n ,1); I= speye (n);
D = spdiags ([e -2*e e], -1:1, n, n);
A = D./(hˆ2)+kk ˆ2*I;
A(1 ,:) =0; A(1 ,1) =1;
A(end ,:) =0; A(end ,end)=1;
b= zeros (n ,1); b(1) =1; b(end)=0;

% numerical solution
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u=A\b;
plot(xx ,u)

% analytic solution
cc =[0 1; sin(kk) cos(kk) ]\[1;0];
uu=@(x) cc (1)*sin(kk*x)+cc (2)*cos(kk*x);
hold on
plot(xx ,uu(xx))

If n is not large enough, namely the exact solution oscillates between two
discretization points, then the numerical solution does not even estimate
the exact solution2. This concept is illustrated in Figure 3.5 and Figure 3.6,
where for κ = 40, and for a reasonable number of discretization points
n = 50, the numerical solution does not even estimate the exact solution.
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Figure 3.5: κ = 40 and n = 50.
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Figure 3.6: κ = 40 and n = 100.

(c) If κ is complex the solution is damping. The larger is the imaginary part of
κ the faster is the damping. See Figures 3.7, 3.8, 3.9, 3.10.

Solution 3.2.

(a) See Problem 3.1.

(b) By Problem 3.1 we have that the general solution is

u(x) = Aeiκ(1+εi)x +Be−iκ(1+εi)x.

Where A and B are determined from the boundary conditions. The homo-
geneous Dirichlet boundary condition at infinity limx→∞ u(x) = 0 implies

2In signal processing this phenomena is called aliasing



174 SOLUTIONS TO THE PROBLEMS

0 0.5 1

−1

0

1

x

y

Figure 3.7: Real part of sol. to (3.21)
for κ = 100 + i
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Figure 3.8: Imaginary part of sol.
to (3.21) for κ = 100 + i
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Figure 3.9: Real part of sol. to (3.21)
for κ = 100 + 5i
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Figure 3.10: Imaginary part of sol.
to (3.21) for κ = 100 + 5i

A = 0, and therefore solution can be written as

u(x) = B eiκx︸︷︷︸
f(x)

e−εκx︸ ︷︷ ︸
gε(x)

,

where, by using the Euler’s formula, we can clearly see that f(x) is periodic
f(x) = eiκx = cos(κx) + i sin(κx).

(c) The function gε(x) = e−εκx goes to zero exponentially for x→∞ and, the
larger is ε the faster is the decay.

Solution 3.3.

(a) In Figure 3.11 is illustrated the convergence of GMRES for different values
of κ2. The number of steps to reach a desired tolerance is not very sensitive
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with respect to the value of κ2, i.e. this preconditioner performs well
independently on the value of κ2.
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Figure 3.11: convergence of GMRES
for different values of κ2.
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Figure 3.12: convergence of GMRES
for different values of ee.

(b) The larger is κ2 the slower is the convergence. Theoretically, larger κ2 means
higher frequency of the oscillations, even for the shifted problem. Oscillations
make the problem harder to solve for the two grids method, because the
accuracy of the approximation in the solution on the coarser grid suffers
from the smaller number of points used to capture the oscillatory behavior.

(c) We fix κ2 = 100000 so that the solutions has oscillations with high frequencies.
In Figure 3.12 we report the convergence plots of GMRES for different values
of ee. As expected the preconditioner works better if the solution is damping
fast, i.e. for larger values of ee.

Solution 3.4. The following is the MATLAB script which can be used to reproduce
the results presented in the following points.
ee =0.5; % value of epsilon
kk =500*(1+ ee *1i); % value of kˆ2
n=50; xx= linspace (0,1,n); h=xx (2) -xx (1);
e=ones(n ,1);
D= spdiags ([e -2*e e], -1:1, n, n)/hˆ2;
D(1 ,:) =0; D(1 ,1) =1; D(end ,:) =0; D(end ,end)=1;
I= speye (n); A=kron(D,I)+kron(I,D)+kk*kron(I,I);
b=ones(n,n); b(: ,1) =0; b(1 ,:) =0; b(:, end)=0; b(end ,:) =0; b=b(:);
u=A\b; u= reshape (u,n,n);
s=surf(xx ,xx ,abs(u));
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(a) The larger is κ2 the higher is the frequency of the oscillations. See Figure 3.13
for κ2 = 10 and Figure 3.14 for κ2 = 100.
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Figure 3.13: κ2 = 10
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Figure 3.14: κ2 = 100

(b) We fix κ2 = 500. If ε > 0 the solution is damping in the middle of the domain.
More precisely the larger is ε the faster is the damping. See Figure 3.15 for
ε = 0 and Figure 3.16 for ε = 0.5.
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Figure 3.15: κ2 = 500, ε = 0
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Figure 3.16: κ2 = 500, ε = 0.5

(c) As for the mono-dimensional case, the oscillations have higher frequency
when κ grows and ε > 0 introduces a damping. The larger is ε the faster is
the damping.

Solution 3.5. The output matrix produced by the script is available online.
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(a) The script produces a FEM discretization of the Helmholtz equation

∆u(x, y) + κ2u(x, y) = f(x, y) (x, y) ∈ [0, 1]2

u(x, y) = 1 (x, y) ∈ ∂[0, 1]2

where f(x, y) = −6 and κ = 20.

(b) The following is the required MATLAB script
load Helmholtz .mat
u=A\b.’; n=sqrt( length (u)); u= reshape (u,n,n);
xx= linspace (0,1,n); surf(xx ,xx ,u)

and it produces the Figure 3.17.
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Figure 3.17: Solution Helmholtz equation from FEniCS.

Solution 3.6.

(a) The easiest weak formulation (as there can be many) is the generalization
of the weak formulation used for Poisson equation ∆u = −f with zero
Dirichlet boundary condition: a(u, v) =

∫
Ω∇u · ∇v and F (v) =

∫
Ω fv.

Assuming zero Dirichlet boundary conditions, from ∆u + k2u = −f by
multiplying by a test function v and integrating over the domain Ω, after
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applying Green’s formulas to integrate by parts, we get the bilinear form
aD(u, v) =

∫
Ω
(
∇u · ∇v − k2uv

)
and the functional F (v) =

∫
Ω fv.

(b) A bilinear form a : H ×H → R is said coercive if it exists a constant C ′ > 0
such that a(v, v) ≥ C ′‖v‖2H for all v ∈ H. This, crudely said, means that the
the functional which describes the problem grows more than quadratically
when v goes to infinity (in the sense of the H-norm), and this assures of
the existence and uniqueness of the solution to the problem, which is the
minimizer of said functional. Of course, more hypotheses are needed on a
and F . The bilinear form aD(u, v) is not coercive, and actually is not even
sign-definite. To show this, let uj be the j-th eigenfunction to the negative
Laplacian −∆uj = λjuj , if k2 = λj , then aD(uj , uj) = 0.

(c) A Galerkin method approximates the solution u to a continuous problem with
a solution v∗ belonging to a certain finite-dimensional space Vh. Let v ∈ Vh
be the optimal solution in this space, hence ‖u− v‖H = infvh∈Vh

‖u− vh‖H .
We say that v∗ is a quasi-optimal solution if it exists a constant C such that
‖u− v∗‖H ≤ C‖u− v‖H . This means that the solution is optimal up to a
scaling constant. Of course, if the constant is very big, the estimate is not
very illuminating. When this kinds of estimates are true, then the notation
a . b ⇐⇒ a ≤ Cb is used.

(d) When the complex shift is introduced in the equation, the corresponding
bilinear form becomes

aε(u, v) =
∫

Ω

(
∇u · ∇v − k2(1 + εi)uv

)
which is now coercive. By using [134, Lemma 3.1] we have that the following
norm is defined on H1(Ω)

‖v‖21,k,Ω := ‖∇v‖2L2(Ω) + k2‖v‖2L2(Ω)

which is equivalent to the usual H1(Ω) norm when k > k0 for some k0 > 0.
Then, if 0 < ε . k2, it exists a constant α independent of k, η, and ε, such
that

|aε(v, v)| ≥ α ε

k2 ‖v‖
2
1,k,Ω for all k > 0 and v ∈ H1(Ω).

The bilinear form is also continuous: in the same hypotheses, given
k0 > 0, there exists Cc independent of k, η, and ε such that |aε(v, v)| ≤
Cc‖u‖1,k,Ω‖v‖1,k,Ω for all k ≥ k0 and u, v ∈ H1(Ω). When the domain Ω is
smooth or a convex polygon, it is possible to show (by using the coerciv-
ity) that the Galerkin approximation to the shifted Helmholtz problem is
quasi-optimal:

‖u− uN‖1,k,Ω ≤
2Cc
α

inf
vN∈VN

‖u− vN‖1,k,Ω
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but there are more general theorems which prove quasi-optimality when the
domain is less smooth, when certain other conditions are met.

Solution 3.7. Let’s consider the FD discretization with n points. By using the
equations (3.9) and (3.10), we should prove that λj/λεj lie in the circle centered
in 1/2 with radius 1/2. This can be done with standard techniques of complex
calculus. One can directly verify this fact by plotting λj/λ

ε
j for j = 1, . . . , n

without computing the eigenvalues of the discretized problem, but using (3.9)
and (3.10).

Solution 3.8. The following MATLAB script does the required comparison.
load(’Helmholtz .mat ’); b = b ’;
nn = length (b); n = sqrt(nn);
[xx_no ,˜,˜,˜, relres_no ] = gmres (A,b ,[] ,1e -9 ,200);
semilogy ( relres_no );
e = ones(n ,1); DD = spdiags ([e -2*e e], -1:1, n, n);
prec = @(x) reshape (lyap(DD , -reshape (x,n,n)),nn ,1);
[xx_prec ,˜,˜,˜, relres_prec ] = gmres (A,b ,[] ,1e -9 ,200 , prec);
hold on; semilogy ( relres_prec )
xlabel (’Iteration ’); ylabel (’Residual ’)

The larger is κ the worse is the preconditioner. See Figure 3.18 for κ = 20 and
Figure 3.19 for κ = 30.
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Figure 3.18: κ = 20
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Figure 3.19: κ = 30

Solution 3.9. The following is the required Python script
from __future__ import print_function
from FEniCS import *
import matplotlib . pyplot as plt
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# Create mesh and define function space
N=10; p=3;
mesh = IntervalMesh (N, 0, 1)
V = FunctionSpace (mesh , ’CG ’,p)

# Define boundary condition
u_D = Expression (’1’, degree =1)

def boundary (x, on_boundary ):
return on_boundary

bc = DirichletBC (V, u_D , boundary )

# Define variational problem
k = 30;
u = TrialFunction (V)
v = TestFunction (V)
f = Constant ( -6.0)
a = -dot(grad(u), grad(v))*dx+k**2* dot(u,v)*dx
L = f*v*dx

# Compute solution
u = Function (V)
solve (a == L, u, bc)

# Plot solution in a finer mesh
# OBS: it is needed to interpolate it
mesh2 = IntervalMesh (100 , 0, 1)
V2 = FunctionSpace (mesh2 , ’CG ’ ,1)
u= interpolate (u,V2)
plot(u); plt.show ()

Even if the solution oscillates between the nodes, if a large enough p is used,
the correct solution can still be computed. In Figure 3.20 we have the solution
for p = 1 and in Figure 3.21 the solution for p = 8. In particular, the solution
obtained for p = 8 is a good approximation to the exact solution. In conclusion,
a good approximation to the solution can be obtained by increasing n (number
of nodes), which corresponds to solving a larger linear system, or by increasing p
(degree basis functions), which corresponds to solving a denser linear system.
Solution 3.10. Let us denote κ = ig with g ∈ R, the solution is u(x) =
c1 exp(gx) + c2 exp(−gx) where c1 and c2 depend on the boundary conditions.
Clearly, the function u(x) does not oscillate. Methods based on exploiting the
regularity of the solution, e.g. multigrid, are very effective. The Jacobi method
does not converge since ρ(D−1A) > 1 where A is the discretization matrix and D
is its diagonal.
Solution 3.11.

(a) No. There are PDEs that are not symmetric3 that lead to a symmetric
3For symmetric PDE we mean that the PDE does not change if we permute the independent

variables, i.e. we replace x with y and y with x.
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systems and PDEs that are symmetric lead to nonsymmetric systems. For
example the following PDE is nonsymmetric but the discretized linear
systems is symmetric.

∂2

∂x2u(x, y) + u(x, y) = f(x, y) (x, y) ∈ [0, 1]2

u(x, y) = 0 (x, y) ∈ ∂[0, 1]2

Instead the following PDE is nonsymmetric but the discretized linear systems
is symmetric.∆u(x, y) + ∂

∂x
u(x, y) + ∂

∂y
u(x, y) + u(x, y) = f(x, y) (x, y) ∈ [0, 1]2

u(x, y) = 0 (x, y) ∈ ∂[0, 1]2

(b) The LDLT factorization exists only for symmetric matrices. See also Prob-
lem 3.12.

Solution 3.12. Let us consider the decomposition A = LDMT . Since L and
M are lower triangular with ones in the diagonal, they are invertible, therefore
M−1AM−T = M−1LD. Since inverse of a lower triangular matrix is lower trian-
gular and product of two lower triangular matrices is lower triangular, M−1LD
is lower triangular. Since M−1AM−T is symmetric (due to symmetry of A),
M−11LD is symmetric as well. Symmetry and lower triangularity together imply
that M−1LD is diagonal, which means that M−1L is diagonal since D is non-
singular. Since both M and L are unit lower-triangular, M−1L = I implies that
M = L, which completes the proof.

Solution 3.13. The solution is also described in Algorithm 2.1 in [122]. The
following code is the completition of the script for computing the sweeping factor-
ization
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nn = size(A ,1); n = sqrt(nn);
T = sparse (nn ,nn);
idx_transf = @(m) (1:n)+(m -1)*n; % Helper to modify indices
m1 = idx_transf (1);
S = A(m1 ,m1); Tm = inv(S);
for m = 2:n

m_idx = idx_transf (m);
mm1_idx = idx_transf (m -1);
S = A(m_idx , m_idx ) - A(m_idx , mm1_idx ) * Tm * A(mm1_idx , m_idx );
Tm = inv(S); T(m_idx , m_idx ) = Tm;

end

Recall that, in our application (discretization of the Helmholtz equation) the
matrix A is a block tridiagonal matrix of size n2 where each block has size n. The
complexity of the sweeping factorization, for a matrix with this specific structure,
is dominated by the inversion Tm = S−1

m , which has complexity O(n3). Since this
operation is performed n times, the total complexity is O(n4).

Solution 3.14. The solution is also described in Algorithm 2.2 in [122]. The
following is the completion of the provided MATLAB code
nn = size(A ,1); n = sqrt(nn);
idx_transf = @(m) (1:n)+(m -1)*n; % Helper to modify indices
u = zeros (nˆ2 ,1);
for m = 1:n

m_idx = idx_transf (m);
u( m_idx ) = f( m_idx );

end
for m = 1:n -1

m_idx = idx_transf (m);
mp1_idx = idx_transf (m+1);
Tm = T(m_idx , m_idx );
Am1m = A(mp1_idx , m_idx );
u( mp1_idx ) = u( mp1_idx ) - Am1m * (Tm*u( m_idx ));

end
for m = 1:n

m_idx = idx_transf (m);
Tm = T(m_idx , m_idx );
u( m_idx ) = Tm*u( m_idx );

end
for m = (n -1) : -1:1

m_idx = idx_transf (m);
mp1_idx = idx_transf (m+1);
Tm = T(m_idx , m_idx );
Amm1 = A(m_idx , mp1_idx );
u( m_idx ) = u( m_idx ) - Tm *( Amm1*u( mp1_idx ));

end

Recall that, in our application (discretization of the Helmholtz equation) the
matrix A is a block tridiagonal matrix of size n2 where each block has size n. The
complexity come from the matrix-vector multiplications which are O(n2) and is
performed O(n) times. Therefore, the total complexity is O(n3).
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Solution 3.15. Sweeping factorization is a block LDLT factorization of A that
eliminates the unknowns layer by layer. For example consider the system Au = b
where

A =


A1,1 A1,2

A2,1 A2,2
. . .

. . . . . . An−1,n
An,n−1 An,n


where Am,m are tridiagonal and Am,m−1 = ATm−1,m. The block LDLT factoriza-
tion is then performed block by block. Starting from the rows corresponding to
the first block layer

A = L1



S1
S2 A2,3

A3,2 A3,3
. . .

. . . . . . An−1,n
An,n−1 An,n

LT1

where S1 = A1,1, S2 = A2,2 −A2,1S
−1
1 A1,2 and

L1 =



I 0
A2,1S

−1
1 I 0

0 I
. . .

. . . . . . 0
0 I

 .

This process is then repeated such that

A = L1 . . . Ln−1

S1
. . .

Sn

LTn−1 . . . L
T
1

where Sm = Am,m−Am,m−1S
−1
m−1Am−1,,m for m = 2, . . . , n−1 and Lm is a block

bidiagonal matrix whose diagonal blocks are I and the off-diagonal blocks are 0
except the block (m+ 1,m) that is Am+1,mS

−1
m .

If a different elimination ordering is used the rank of the off-diagonal blocks of
Sm become much higher and therefore the technique does not result in an efficient
algorithm.

Solution 3.16. Given a matrix M with (ordered) singular values σ1, . . . , σn, the
numerical rank of a M is k if σ1/σk < ε, where ε is the wanted tolerance, which we
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fixed to 10−16. We used the code in Problem 3.13 and generate the matrices such
that Tm has size n2 = 256 and it is composed by block matrices of size n = 16. In
Figure 3.22 we illustrate the numerical rank of each block of T2 (similar results
hold for the other matrices Tm). As we can see the rank decreases moving away
from the block diagonal. This effect is amplified for larger matrices.
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Figure 3.22: The color represent to rank of each block. Yellow is full-rank (16)
and blue is low-rank (4).

Solution 3.17.

(a) With a direct computation, following the Schur complement scheme, we get

M =
(

A uvT

uvT B

)
=
(

I 0
uvTA−1 I

)(
A 0
0 B − uvTA−1uvT

)(
I 0

uvTA−1 I

)T
which has rank-1 structure, and can be reached with O(n) operations.
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(b) Analogously to the previous point

M =
(

A UV T

UV T B

)
=
(

I 0
UV TA−1 I

)(
A 0
0 B − UV TA−1UV T

)(
I 0

UV TA−1 I

)T
Observe that Y := A−1V can be calculated in O(nk) by solving k linear
systems with the matrix A. Same for W := Y TU , which is also calculated
in O(nk). Then, the LDLT factorization is given by

M =
(

I 0
UY T I

)(
A 0
0 B − UWV T

)(
I 0

UY T I

)T
(c) Let us consider the truncated SVD factorization Ẽ = Ũ Σ̃Ṽ T such that
‖E − Ẽ‖ < 10−16. The approximated LDLT factorization is given by

M̃ = L̃D̃L̃T = N

(
A 0
0 B − Ũ Σ̃Ṽ TA−1Ũ Σ̃Ṽ T

)
NT

where

N =
(

I 0
Ũ Σ̃Ṽ TA−1 I

)
which can be computed in O(nk) where k is the rank of the matrices in the
truncated SVD factorization.

Solution 3.18. A matrix A ∈ Rn×n has an hierarchical structure if we can find
non-intersecting index sets (Jk)pk=1 and (Ir)qr=1 such that ∪pk=1Jk = ∪qr=1Ir =
(1, 2, . . . , n) and the submatrices AJk,Ir have low rank. The idea behind the
hierarchical matrices is to extend the benefits of the low rank theory. We know
that if a matrix A ∈ Rn×n has rank k it can be stored/represented by using O(kn)
data. Clearly if a matrix A ∈ Rn×n is not low rank, but can be represented (via
submatrices) by using low rank matrices, then we have benefits in terms of memory
usage in its representation. Standard matrix-matrix and matrix-vector operations
(sum, multiplication, products, linear solves, etc) can efficiently be performed by
exploiting this structure. As an example, low rank matrices are hierarchical. The
following matrix

A =


1 3 2 6
−1 0 −2 0
2 3 4 6
−2 1 −4 2


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is full rank, but has an hierarchical structure. Select I1 = (1, 3),I2 = (2, 4),J1 =
(1, 3),J2 = (2, 4) and verify that the submatrices AJk,Ir

have rank one. Another
class of hierarchical matrices are tridiagonal matrices. Quasi-separable matrices are
also hierarchical matrices. In certain applications from PDEs we get hierarchical
matrices.

Solution 3.19. We denote S := S5. This matrix has a very specific structure,
the absolute values of its elements decay exponentially from the diagonal, i.e.,
there are two constants C and α such that (Tm)i,j ≈ Ce−α|i−j|. See Figure 3.23.
Such matrices appear in many different fields, see e.g., [102]. Because of this, we
expect the diagonal preconditioning to be effective. See Figure 3.24.
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Figure 3.23: imagesc(lohg10(abs(S))).
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Figure 3.24: Convergence of GMRES
w/o diagonal preconditioner.

Solution 3.20. Consider any function that can be decomposed as

G(x, y) = H(x, y) +
k∑
i=1

wi(x)zi(y)

such that {H 6= 0} has small area with respect to {G 6= 0}.

Solutions to Chapter 4
Solution 4.1.

(a) The following lines contain the missing code


