
PRECONDITIONING
FOR LINEAR

SYSTEMS
Giampaolo Mele

Emil Ringh
David Ek

Federico Izzo
Parikshit Upadhyaya

Elias Jarlebring

Copyright c© 2020 by the authors. All rights reserved. This book or any portion
thereof may not be reproduced or used in any manner whatsoever without the
express written permission of the authors except for the use of brief quotations in
a book review.

Printed by Kindle Direct Publishing

First Printing, 2020

ISBN 9798646306334

www.preconditioning.se

The image in the cover is the mesh used for discretizing the Poisson equation with
a satellite geometry as domain. See Problem 1.14 for details.

Table of Contents
Preface v

Notation and abbreviations vii

1 Iterative solution methods 1
1.1 Iterative algorithms . 2
1.2 Preconditioned iterative algorithms 4
1.3 Convergence theory . 6
1.4 Problems . 10

2 General preconditioners 17
2.1 Basic iterative methods . 18
2.2 LU factorization and sparse matrices 22
2.3 Incomplete LU factorization . 29
2.4 Problems . 31

3 Preconditioning for Helmholtz equation 41
3.1 Damping and oscillations . 42
3.2 The two grids method . 44
3.3 Shifted-Laplacian preconditioner 45
3.4 Perfectly Matched Layers . 46
3.5 Sweeping factorization . 48
3.6 Problems . 55

4 Domain decomposition 63
4.1 Non-overlapping domains . 64
4.2 Overlapping domains . 69
4.3 Problems . 75

5 Multigrid 87
5.1 Introduction to the geometric multigrid 87
5.2 Multigrid methods . 92
5.3 Algebraic multigrid . 95
5.4 Problems . 106

6 Saddle point matrices 115
6.1 Saddle point systems . 116
6.2 Fixed point iterations . 119
6.3 Block preconditioners . 121
6.4 Problems . 123

iii

iv TABLE OF CONTENTS

Solutions to the problems 137
Solutions to Chapter 1 . 137
Solutions to Chapter 2 . 151
Solutions to Chapter 3 . 172
Solutions to Chapter 4 . 186
Solutions to Chapter 5 . 206
Solutions to Chapter 6 . 226

References 253

Index 273

Preface
Solving linear systems of equations is a fundamental problem in most scientific
fields involving computation, i.e., given A ∈ Cn×n and b ∈ Cn compute x such
that

Ax = b. (1)

Of specific interest in applications are situations where n is large and the matrix
A is sparse. This matrix is often stemming from a discretization of a model of a
physical system such as the model on the cover page. Typically, in the large-scale
cases, one resorts to iterative methods to compute solutions or approximations
to the solution. The standard application of an iterative methods to a difficult
application problem, does often not give satisfactory performance. However, many
iterative methods can be adapted to take into account additional information, e.g.,
a method which computes an approximation of the action of A−1. Techniques to
form such actions, called preconditioners, is the topic of this book. The design
of preconditioners is highly dependent on the origin of the problem. We give
an overview of many preconditioners from applications as well as application
indenpendent preconditioners.

This book originates from material developed by the students and teacher of
the PhD-level course SF3584 (7.5 ECTS) given at the Department of Mathematics
at KTH Royal Institute of Technology in Stockholm, during the spring of 2018.
The chapters in the book are based on blocks in the course. A substantial part
of the work of the course consisted of summarizing the material and formulating
problems and solutions, which formed the starting point of the book. The main
references for each chapter are listed at the beginning of each chapter. Those, and
references therein, can serve as a starting point for a more through treatment of
each topic. Before summarizing the material of each chapter, we also provide a
short discussion of further literature, which was beyond the scope of the summary
and problems. Although all authors of the book have been involved in all parts of
the book, each chapter has some designated main authors:

• Chapter 1: Elias Jarlebring
• Chapter 2: David Ek and Emil Ringh
• Chapter 3: Giampaolo Mele and Federico Izzo
• Chapter 4: Giampaolo Mele and Parikshit Upadhyaya
• Chapter 5: Federico Izzo and Emil Ringh
• Chapter 6: David Ek and Parikshit Upadhyaya

Our objective is to provide a consistent introduction to some of the many techniques
for preconditioning. The target audience is students, e.g., graduate students in
applied and computational mathematics, or researchers in other scientific fields.
The summary of the topics should be viewed as a preparation to an deeper study

v

vi PREFACE

in the topic, and can be read before the cited articles and books. We provide a
large number problems for the material of the chapters. Many problems involve
matrices and files from applications. These data files and other supplementary
information are available in the official website of the book

www.preconditioning.se

Most preconditioners need to take application dependent information and
structures into account, and they are therefore often developed with application
specific techniques and terminology. Therefore, providing a complete and concise
overview of preconditioners is hard. We refer to the summary works of Benzi [33]
and Wathen [269]. Although we have tried to collect the most important precon-
ditioning techniques in this book, it is not a complete summary of preconditioners.
We now list some topics relevant for preconditioning, not covered in this book.

The sparse approximation and sparse inverses, is a well-studied topic from
a number perspectives, as described in the overview papers [44, 182]. High-
performance computing aspects and parallelization techniques for sparse approxi-
mation can be found in [25, 26, 40, 85, 126, 143, 180], exploitation of block struc-
tures and ordering aspects are given, e.g., in [27, 45, 64, 87]. See [34, 41, 90] for
algorithm specific research, [1, 43, 183] for applications, and related results in
[65, 77, 86, 95, 160–162, 178]. Multilevel methods are also only vaguely covered
in this book; see [56, 105, 175, 186, 199, 200, 210, 211, 246, 275, 276]. Polynomial
preconditioning is covered in [8, 167, 190, 191]. Further examples of applica-
tion specific research which can be viewed as preconditioners can be found in
[3, 38, 39, 46, 70, 74–76, 115, 158, 173, 205, 241, 242, 268, 270, 277]. Our focus is on
large linear systems, although preconditiong techniques are present in other fields
as well, such as eigenvalue computation [49, 50, 179, 203, 273], dense linear sys-
tems arising in the boundary element method (BEM) [81–83] and ill-conditioned
problems [57, 214]. See further preconditioning surveys [12, 71, 233] and the books
[52,84]. Most of the preconditioning techniques we present are often combined with
Krylov methods, whose theory and property is described, e.g., in [230,245,249].

The cover of this page corresponds to the finite element discretization of a
satellite. It is described in Problem 1.14 on page 15 and page 148. We are greatful
for the comments and ideas about the design of the front page by Kristofer Bohlin.

It has been a pleasure for us to work out the material of this book, and we hope
we managed to convey this message such that readers obtain the same pleasure.

Stockholm
May 2020

Giampaolo Mele
Emil Ringh
David Ek
Federico Izzo
Parikshit Upadhyaya
Elias Jarlebring

www.preconditioning.se

Notation and abbreviations
Notation

R,Rn,Rn×m set of real numbers, vectors, and matrices
C,Cn,Cn×m set of complex numbers, vectors, and matrices
ai,j , [A]i,j , A(i, j) (i, j) element of the matrix A
vi i-th element of the vector v
A(p1 : p2, q1 : q2) sub-matrix of of A
κ(A) condition number of the matrix A
σ(A) set of the eigenvalues of A
σε(A) pseudospectra of A
span(v1, . . . , vk) span defined by vectors v1, . . . , vk
rank(A) rank of a matrix A
det(A) determinant of the matrix A
Re(z), Im(z) real and imaginary part of the complex number z
Km(A, b) Krylov subspace
λj , λj(A) j-th eigenvalue of A
σj , σj(A) j-th singular value of A
O(·) computational complexity
‖A‖, ‖v‖ Euclidean norm of the matrix A and vector v
‖ · ‖∞, ‖‖p Infinity and p-norm operator
‖ · ‖B The B-weighted Euclidean norm

Software

MATLAB www.matlab.com
Python www.python.org
FEniCS www.fenicsproject.org
COMSOL www.comsol.com

Abbreviations

ABC Absorbing boundary conditions
AMG Algebraic multigrid
Bicg(Stab) Biconjugate gradient (stabilized) method
CG Conjugate gradients method
FD Finite difference method
FEM Finite element method
GMRES Generalized minimal residual method
LU LU factorization

vii

www.matlab.com
www.python.org
www.fenicsproject.org
www.comsol.com

viii NOTATION AND ABBREVIATIONS

ILU Incomplete LU factorization
KKT Karush–Kuhn–Tucker
PCG Preconditioned conjugate gradients method
PDE Partial differential equation
PML Perfectly matched layers
RHS Right-hand side
SOR Successive over relaxation method
SSOR Symmetric successive over relaxation method
SPD Symmetric positive definite

Chapter 1

Iterative solution methods
Let us consider the linear systems

Ax = b (1.1)

where A ∈ Cn×n and b ∈ Cn, for the moment without any specific additional
assumptions. The iterative methods we consider in the book generate a sequence
of approximations x1, x2, . . . of the solution to (1.1). These methods aim to
gradually improve a solution approximation during the iterations until a specified
error tolerance is reached. They are usually presented as a complement to direct
methods, which lead to an exact solution after a finite number operations, under
the exact arithmetic assumption. We summarize several of the common iterative
methods and illustrate several ways to characterize the convergence. The success
of iterative methods is highly dependent on properties of the matrix, which is the
justification for preconditioners, i.e., all the specific techniques in the following
chapters.

Literature
This chapter assumes that the reader is already familiar with standard iterative
methods in numerical linear algebra [257] or [103].

� Convergence bounds for iterative methods:

– Eigenvalue and pseudospectra: [258, pp. 12–23, 244–253], and the
software for pseudospectra computation [156]

– Right-hand side dependence: [256]

� Preconditioning variations:

– Left-right and split preconditioner: sections 9.2 and 9.3 of [237]
– Flexible GMRES: [232]

Further reading
Iterative methods for linear systems are presented in the book of Saad [237],
GMRES convergence results can be found in the books of Greenbaum [149] and
Strakoš and Liesen [249] and the review paper of Simoncini and Szyld [245]. Further
characterizations can be found in various papers, e.g., bounds based on the field
of values in [30, 116, 120]. When the worst case starting vector for GMRES is

1

2 CHAPTER 1. ITERATIVE SOLUTION METHODS

considered, we obtain what is called the ideal GMRES minimization problem which
has been studied, e.g., in [149] and [187]. More results concerning the convergence
of GMRES and related iterative methods can be found in [110, 147, 262]. The
flexible GMRES has been adapted to other iterative methods, e.g., CG [212].
Further right-hand side dependent bound characterizations can be found in [7],
and [73]. The matrix computation toolbox [156] contains several tools for studying
the pseudospectra, among these functions we use pscont to compute the contour
of the pseudospectra. CG has been adapted and extended to problems with specific
structures and settings, see e.g., [2, 128,141]. CG-specific preconditioners can be
found in [41,93,171]. See also further work on CG [92,100,114,119,125,223] and
GMRES [94]. Iterative methods relevant for preconditioning which we do not
discuss in this chapter are: BiCGSTAB [263], QMR [131,132,253] and Lanczos
methods [139,148,185]. More information about iterative methods can be found
in the books [14,28,127,133,135,152,154] and review papers [177,198,215].

1.1 Iterative algorithms
The derivation of many iterative algorithms often stem from searching for solutions
in Krylov subspaces.

Definition 1.1 (Krylov subspace). Given b ∈ Cn, the Krylov subspace is defined
as

Km(A, b) := span(b, Ab,A2b, . . . , Am−1b).

The generalized minimum residual method (GMRES), introduced in by Saad
and Schultz in [238], is a procedure to find the best approximation of the solution
to (1) in a Krylov subspace. The m-th iterate of GMRES satisfies

xm = argmin
x∈Km(A,b)

‖Ax− b‖ (1.2)

The minimizer (1.2) can be computed by solving the linear system obtained
by projecting (1) into the Krylov space. This procedure, which is based on
the computation of an orthogonal basis to the Krylov space, is summarized in
Algorithm 1. The computation of the orthogonal basis of the Krylov space is
often a dominating part of the GMRES algorithm. More precisely, in Step 3 of
Algorithm 1, at each iteration the orthogonalization of the new vector against
all previous basis vectors is peformed. The number of operations per iteration
increases with iteration count, and usually eventually becomes significant in
comparison to other operations. Namely, the complexity of GMRES depends
on the total number of iterations, and therefore slow convergence of the method
makes the whole approach unfeasible. Moreover, the orthogonalization step makes
the algorithm inherently difficult to properly parallelize, due to many-to-many
communication.

1.1. ITERATIVE ALGORITHMS 3

Algorithm 1: GMRES - Generalized Minimum Residual Method
Input: Matrix A and vector b
Output: An approximate solution x to the linear system Ax = b

1 Set q1 = b/‖b‖, H0 =empty matrix
for m = 1, 2, . . . do

2 Compute x = Aqm
3 Orthogonalize x against q1, . . . , qm by computing h = QHx and setting

x⊥ = x−Qh.
4 Set β = ‖x⊥‖
5 Set qm+1 = x⊥/β
6 Set

Hm =
(
Hm−1 h

0 β

)
end

7 Solve the overdetermined linear system by computing ym ∈ Rm such that:

ym = argmin
z∈Rm

‖Hmz − e1‖b‖‖

8 Return the approximate solution x = Qmym

Two standard approaches to lessen the problems generated by basis orthog-
onalization are: restarting the method (which we do not consider in this work)
and variants which do not require orthogonalization against all vectors; so called
short-term-recurrence methods. For symmetric positive definite matrices, the most
popular short-term-recurrence method is the conjugate gradients method (CG).
The CG method can also be viewed as the minimizer of a the residual, but with
respect to a different norm. The m-th iterate of CG satisfies

xm = argmin
x∈Km(A,b)

‖Ax− b‖A−1 . (1.3)

Somewhat remarkably, this minimization problem can be solved in a similar way
as in GMRES but only requiring orthogonalization against two previous vectors.
More precisely, CG also computes an orthogonal basis of the Krylov space and,
in each step, the vector Aqm is already orthogonal to q1, . . . , qm−2, therefore it
should be orthogonalized only with respect to qm and qm−1. CG can be derived
from the application of the Lanczos method (symmetry exploiting method) and a
Cholesky factorization. There are many other viewpoints of the CG method [243].
One of the first variants of CG, presented in [155], is given in Algorithm 2.

4 CHAPTER 1. ITERATIVE SOLUTION METHODS

Algorithm 2: Conjugate Gradient (CG) method
Input: Matrix A and vector b
Output: An approximate solution x to the linear system Ax = b

1 x0 = 0, r0 = b, p0 = r0
for m = 1, 2, . . . do

2 αm = rT
m−1rm−1

pT
m−1Apm−1

3 xm = xm−1 + αmpm−1
4 rm = rm−1 − αmApm−1

5 βm = rT
mrm

rT
m−1rm−1

6 pm = rm + βmpm−1
end

7 Return the approximate solution xm

1.2 Preconditioned iterative algorithms
In most situations, improvements of the standard iterative methods above are
needed in order to make the converge sufficiently fast. In a first approach to achieve
this, we view preconditioning as applying the same algorithm to a transformed
problem:

• Left preconditioned considers the linear system

M1Ax = M1b (1.4)

• Right preconditioned considers the linear system

AM2z = b (1.5)

where x = M2z.

• Left and right preconditioning considers the linear system

M1AM2z = M1b (1.6)

where x = M2z.

The linear systems (1.4) - (1.5) - (1.6) are referred to as preconditioned linear
systems. The matrices M1 and M2 are called preconditioners and need to be
chosen such that:

(i) linear systems defined by the preconditioners, i.e., Mz = c, can efficiently
be solved,

1.2. PRECONDITIONED ITERATIVE ALGORITHMS 5

(ii) the algorithms perform better when applied to the associated preconditioned
linear system with respect to the original problem (1.1).

In theory, we can apply one of the iterative methods to the preconditioned linear
systems. We now illustrate how, for two methods, this can be efficiently done
in an algorithmic level without never explicitly compute the matrix defining the
preconditioned linear system.

PCG: Preconditioned Conjugate Gradient
The CG method is designed for symmetric positive definite (SPD) problems.
Therefore, we now assume that the matrix A is SPD. The modified matrices
in (1.4) and (1.5) are, in general, not SPD. Fortunately, if we couple M1 and
M2 in a particular way, the transformed problem satisfies that assumption of
CG. The two-sided preconditioning (1.6) is SPD if M1 = MT

2 and if M1 and
M2 are nonsingular. The PCG method can be derived from the application of
CG to the preconditioned system (1.6). A transformation allows us to carry out
the algorithm without explicitly constructing the preconditioned system. Let us
denote by M = M1M2 the product between the left and right preconditioner, PCG
require an efficient solver for the linear systems defined by M . In particular PCG is
derived by replacing, in Algorithm 2, the matrix A with the preconditioned system,
and by properly manipulating these steps involving the preconditioned matrices,
resulting in Algorithm 3. The full derivation is presented, e.g., in [237, s. 9.2.1].

Algorithm 3: Preconditioned conjugate gradients method
Input: Matrices A and M and vector b
Output: An approximate solution x to the linear system Ax = b

1 x0 = 0, r0 = b, z0 = M−1b, p0 = z0
for m = 1, 2, . . . do

2 αm = rT
m−1zm−1

pT
m−1Apm−1

3 xm = xm−1 + αmpm−1
4 rm = rm−1 − αmApm−1
5 zm = M−1rm

6 βm = rT
mzm

rT
m−1zm−1

7 pm = zm + βmpm−1
end

8 Return the approximate solution xm

6 CHAPTER 1. ITERATIVE SOLUTION METHODS

Flexible GMRES
As we will see in later chapters, it may be advantageous to change the preconditioner
throughout the iterations. Unfortunately, the standard GMRES method may
have slower convergence or stagnate, if one modifies the preconditioned operator
throughout the iterations. This is due to the fact that the space spanned by the
iterates no longer span a Krylov subspace, and the minimization problem does
not longer corresponds to the minimizer of the residual over a subspace. One of
the most popular ways to provide the possibility of changing the preconditioner
throughout the iterations is called flexible GMRES [232]. This approach is
summarized in Algorithm 4, where it is assumed that the preconditioner changes
at every iteration. More precisely, Mm denotes the preconditioner used at the m-th
iteration. In comparison to standard GMRES, this algorithm requires the storage
of one more matrix Zm ∈ Cn×m. Moreover, it no longer exhibits the polynomial
characterization of the convergence, but it does correspond to the minimization
over a specific subspace (which is in general is not a Kryov subspace).

1.3 Convergence theory

Eigenvalue based bounds
The standard bound for GMRES convergence is based on a minimization over
polynomials evaluated in the eigenvalues of the matrix A, with a coefficient
containing the condition number of the eigenvector matrix. We denote the set of
polynomials normalized in zero by

P0
m := {p polynomial of degree m such that p(0) = 1}.

We denote by rm := ‖Axm − b‖ the residual of GMRES at the m-th iteration.

Theorem 1.2 (Min-max GMRES-bound). Suppose that A is diagonalizable with
the following eigendecomposition A = V ΛV −1 and let r0, r1, r2, . . . be the residuals
of GMRES applied to the linear system Ax = b. Then,

‖rm‖
‖r0‖

≤ ‖V ‖‖V −1‖ min
p∈P0

m

max
i=1,...,n

|p(λi)|. (1.7)

To gain further intuition based on this bound, we specialize it by using a result
for minimization over a disk, from [231, Lemma 6.26].

Lemma 1.3 (Zarantonello bound). Let B(c, r) denote a disk centered in c ∈ C
with radius r > 0, i.e.,

B(c, r) := {λ ∈ C such that |c− λ| ≤ r}.

1.3. CONVERGENCE THEORY 7

Algorithm 4: Flexible GMRES
Input: Matrix A and vector b a starting guess x0 and M1,M2, . . . , which

are a sequence of right preconditioners
Output: An approximate solution x to the linear system Ax = b

1 Compute r0 = b−Ax0, β0 = ‖r0‖ and r1 = r0/β0
for m = 1, 2, . . . do

2 Compute zm = M−1
m qm

3 Compute w = Azj
4 Orthogonalize w against q1, . . . , qm by computing h = QHw and

setting w⊥ = w −Qh
5 Set β = ‖w⊥‖
6 Set qm+1 = x⊥/β
7 Set

Hm =
(
Hm−1 h

0 β

)
end

8 Solve the overdetermined linear system by computing ym ∈ Rm such that:

ym = argmin
z∈Rm

‖Hmz − e1β0‖

9 Return the approximate solution

x = x0 + Zmym,

where Zm = [z1, . . . , zm].

The polynomial of P0
m that takes the minimum value on this disk is explicitly given

by
argmin
p∈P0

m

max
z∈B(c,r)

|p(z)| = (c− z)m
cm

.

This result can be combined with the fact that, if the eigenvalues lie in the
disk B(c, r), for any function g(λ), with domain containing B(c, r), we have

max
λ∈{λ1,...,λn}

g(λ) ≤ max
λ∈B(c,r)

g(λ).

Therefore, we obtain the following bound which is useful if the eigenvalues are
clustered close to one point, far from the origin in a relative sense.

Corollary 1.4 (GMRES disk bound). With the same assumptions as in The-
orem 1.2, assume that all eigenvalues are contained in a disk B(c, r), namely

8 CHAPTER 1. ITERATIVE SOLUTION METHODS

λi ∈ B(c, r) for i = 1, . . . , n. Then,

‖rm‖
‖r0‖

≤ ‖V ‖‖V −1‖ r
m

|c|m

The bound in the above corollary does not involve the starting vector, and
also not the b-vector. The convergence will certainly depend on this. Variations of
the bound that take this into account can be found in [256]. The following bound,
which is a slightly modified formulation of [256, Theorem 2.2], illustrates that the
individual eigenvalue contributions can be weighted in a way that depends on
essentially the vector V −1b, if r0 = b.

Theorem 1.5 (RHS-dependent eigenvalue bound). Under the same assumptions
as Theorem 1.2, let w := V −1r0/(‖V −1‖‖r0‖), then

‖rm‖
‖r0‖

≤ ‖V ‖‖V −1‖ min
p∈P 0

m

(
n∑
i=1
|wi|2|p(λi)|2

)1/2

(1.8)

This can be related to the min-max bound (1.7) as follows. Note that
n∑
i=1
|zi|2 = ‖z‖2 = ‖diag(z)2e‖ ≤ ‖diag(z)2‖‖e‖2

= ‖e‖2 max
i=1,...,n

|zi|2 = n · max
i=1,...,n

|zi|2

where e = [1, . . . , 1]T . If we select zi = |wi| · |p(λi)| we can further bound the
quantity in (1.8) obtaining min-max expressions similar to Theorem 1.2 but with
weighting:

‖rm‖
‖r0‖

≤ √n‖V ‖‖V −1‖ min
p∈P 0

m

max
i=1,...,n

|wi||p(λi)| (1.9)

Note that w satisfies
V w = r0/(‖V −1‖‖r0‖)

which means that it can be interpreted as the weighting coefficients of the starting
residual in terms of the eigenvectors. For instance, if we do not need eigenvector
j to express the starting residual, we have wj = 0 and that eigenvalue will
not contribute to the min-max expression in the bound (1.9). Similarly, if the
contribution of the direction of an eigenvector in the starting residual is small, the
corresponding eigenvalue will carry less weight in the bound (1.9).

Pseudospectra based bounds
The convergence of many iterative methods can be further characterized by the
pseudospectra.

1.3. CONVERGENCE THEORY 9

−1 0 1 2
−1

−0.5

0

0.5

1

Real

Im
ag

eigenvalues

Figure 1.1: Pseudospectra of a radom
matrix of size 10 for ε equal to
10−1.5, 10−1.2 and 10−1.

0 20 40 60
10−15

10−9

10−3

Iteration

R
es

id
ua

l
Figure 1.2: Convergence of GMRES
with transient phase.

Definition 1.6 (Pseudospectra). Given ε > 0 the pseudospectra of the matrix A
is defined as

σε(A) := {z ∈ σ(A+ E) such that ‖E‖ < ε} .
Observe that σ(A) ⊆ σε(A) for every value of ε. The pseudospectra describes

how sentive is the spectrum of the matrix A with respect to perturbations. An
example of a pseudospectra (of a small random matrix) is given in Figure 1.1,
computed with pscont [156]. The convergence of GMRES can be described with
a min-max bound involving the pseudospectra.
Theorem 1.7 (Pseudospectra convergence bound). Let Lε the length of the
contour of σε(A), then

‖rm‖
‖r0‖

≤ Lε
2πε min

p∈P0
m

max
i=1,...,n

|p(λi)| (1.10)

The above theorem states that GMRES may have a transient phase. The rate
of convergence in the beginning of the iteration may be substantially different
than when the iterate is close to a solution. This initial phase, usually referred to
as transient phase, is characterized by the pseudospectra of the matrix, namely by
the sensitivity of the eigenvalues. After the transient phase, GMRES enters in the
asymptotic regime and it converges with a converge rate which in general described
by Corollary 1.4. We illustrate these concepts in Figure 1.2 where GMRES is
applied to a matrix with the following block structure:

A =
(
A1 0
0 A2

)

10 CHAPTER 1. ITERATIVE SOLUTION METHODS

where A ∈ R500×500, A1 ∈ R30×30 is a companion matrix with random coefficients
and A2 ∈ R470×470 has eigenvalues clustered close to one. The spectrum of
companion matrices is very sensitive with respect to small perturbations, i.e.,
σε(A1) is a large set even for small ε. As expected the stagnation phase takes
around 30 iteration due to the pseudospectra of A1. After 40 iterations GMRES
converges with convergence rate given by Theorem 1.2 and/or Corollary 1.4.

1.4 Problems
Problem 1.1. Consider the following two definitions of pseudospectra

• Definition 1

σε :=
{
z ∈ C such that ‖(zI −A)−1‖ > ε−1}

• Definition 2

σε :=
{
z ∈ C such that z ∈ σ(A+ E) with E ∈ Cn×n and ‖E‖ ≤ ε

}
(a) One of the two definitions is not correct. Identify and correct the wrong

definition.

(b) Prove that the two definitions, after the correction in (a), are equivalent.

Problem 1.2. Consider the following definition for pseudospectra given in [258],

σε(A) = {z ∈ Cn, ‖(zI −A)v‖ < ε, where v ∈ Cn, ‖v‖ = 1}

Prove that this definition is equivalent to the second (corrected) definition of
pseudospectra in Problem 1.1.

Problem 1.3. Compute the 50 largest and smallest eigenvalues of the K-matrix
from problem capacitor_tunable_piezo_domain_K.mat

(a) Consider the linear system Kx = b. Why GMRES is expected to have slow
convergence for this problem?

(b) Consider the shifted linear system (K − I)x = b. Is the convergence of
GMRES expected to be faster with respect to (a). Why?

Problem 1.4. Discovering properties of pseudospectra

(a) Prove that σ|c|ε(cA) = cσε(A) where c ∈ C.

(b) Let Dε be the disk (in the complex plane) centered in zero with radius ε.
For which class of matrices it holds σε(A) = σ(A) +Dε?
Hint: start testing this properties for diagonal matrices, Jordan blocks, 2x2
matrices, etc. No closed answer required. If it is too hard, just show that
σ(A) +Dε ⊆ σε(A).

1.4. PROBLEMS 11

(c) It is known that if A and B are diagonalizable and commute, i.e., AB = BA,
then σ(A) + σ(B) = σ(A + B). Is this true for the pseudospectra? More
precisely is σε(A) + σε(B) = σε(A+B)? If yes prove it, otherwise show a
counterexample.

Problem 1.5. In this problem we look at eigenvalue sensitivity, pseudospectra,
and GMRES convergence.

(a) Consider the following MATLAB code:
[Q ,˜]= qr(rand(n,n));
a=[-30 -3* rand(n/3 ,1) ; -20 -2* rand(n/3 ,1) ; -10 -2* rand(n/3 ,1)];
A=Q*diag(a)*Q ’;
A=(A+A ’) /2; S= balance (compan (poly(a)));

This script creates a “well-behaved” matrix A which is symmetric and with
prescribed eigenvalues which are distributed in three regions of the complex
plane. The matrix S is a balanced version of the companion matrix to A,
and hence mathematically it has the same eigenvalues as A. Thus, from
an eigenvalue analysis, GMRES should have similar convergence behavior.
However, the operations involved in constructing S are not well conditioned.
How can we see this if we compute the eigenvalues and the pseudospectra?
Try n = 12 and n = 21, a plot like

pscont(A, 4, 100, [-40,0,-4,4]))

which is a function provided by the toolbox [156].

(b) Now instead consider the MATLAB code:
[Q ,˜]= qr(rand(n,n));
a=[-30 -3* rand(n/3 ,1) ; -20 -2* rand(n/3 ,1) ; -10 -2* rand(n/3 ,1)];
S= balance (compan (poly(a)));
aa=eig(S); A=Q*diag(aa)*Q ’;

This script is similar as above in (a), but we know that that A and S have the
same eigenvalues, not only in exact arithmetic but also numerically. Create
a random right-hand-side and test the GMRES convergence behavior.
What can we say? How does the GMRES convergence look like? How does
the pseudospectra of A and S look like? This is slightly more stable and
hence we can consider n = 66, a plot like

pscont(A, 4, 100, [-80,0,-45,45], -10:1:0).

Problem 1.6. Krylov subspaces properties and RHS
We want to use GMRES for solving Ax = b where A ∈ Rn×n is diagonalizable.

12 CHAPTER 1. ITERATIVE SOLUTION METHODS

(a) Assume that b can be expressed as a linear combination of m � n eigen-
vectors of A (for example m = 10 eigenvectors). After exactly how many
iterations GMRES converges?

(b) Let W an invariant space for A, i.e., AW ⊆ W with dim(W) = m � n.
Assume that b ∈W . After exactly how many iterations GMRES converges?

Hint: these properties directly come from the Krylov space structure. Try to
answer the question for m = 1 and then generalize.

Problem 1.7. Learning RHS-bounds on your own. This is suitable to be solved
after a careful reading of [256].

Due to the minimization property of GMRES, the residual can be expressed as

‖rm‖ = min
p∈P0

m

‖p(A)b‖.

Let consider the eigendecomposition A = ZΛZ−1. Let w = Z−1b/‖b‖.

(a) Show that p(A)b = ZWp(Λ)e. What is W? what is e?

(b) Show that ‖rm‖ ≤ ‖Z‖minp∈P0
m
‖Wp(Λ)e‖. What are the elements of

Wp(Λ)e explicitly?

(c) How is the derivation related to the derivation in [256]? (It’s not exactly
the same.)

Problem 1.8. Run GMRES on a diagonal matrix consisting of the elements 1:n.
>> n =100;
>> A= spdiags ((1:100) ’ ,0 ,100 ,100);
>> b= randn (100 ,1);

The MATLAB implementation of GMRES (without restarting) can be run in this
way in order to get a convergence diagram:
>> [X,FLAG ,RELRES ,ITER , RESVEC] = gmres (A,b, length (b));
>> semilogy (RESVEC)

We obtain the convergence diagram in Figure 1.3.
One of the curves is with random RHS the other with

>> b= zeros (n ,1); b (50:60) =1;

(a) Which RHS correspond to which curve? Relate to theory for RHS-
convergence of GMRES

(b) If we take RHS: b=zeros(n,1); b(90:100)=1; Do we get faster or slower
convergence. Relate to RHS-convergence theory.

1.4. PROBLEMS 13

0 2 4 6 8 10 12

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

R
es

id
ua

l

Convergence of GMRES

Figure 1.3: Convergence of GMRES applied to the diagonal matrix in Problem 1.8.

Problem 1.9. Flexible GMRES
Equation (1) in Saad’s paper [232] states

AZm = VmHm

Prove that this relation reduces to the standard Arnoldi relation if Mj = M for
j = 1, . . . ,m.

Problem 1.10. Flexible GMRES with BiCGSTAB as preconditioner.
We want to solve in MATLAB the system Ax = b with A ∈ Rn×n with flexible
GMRES. As preconditioner we use BiCGSTAB with variable number of iterations.

(a) Complete the following MATLAB script of flexible GMRES. More precisely
as preconditioner Mjx we consider the function M(j, x) that perform j steps
of BiCGSTAB.
n =200; e = ones(n ,1);
A = spdiags ([e 2*e e], -1:1, n, n);
b=rand(n ,1); norm_b =norm(b);
V(: ,1)=b/ norm_b ;
m=30;
M=@(j,b) ;
for j=1:m

14 CHAPTER 1. ITERATIVE SOLUTION METHODS

Z(:,j)=M(j ,................) ;
V(:,j+1) =...............;
h=V(: ,1:j) ’*V(:,j+1);
V(:,j+1)=V(:,j+1) -V(: ,1:j)*h;
g=V(: ,1:j) ’*V(:,j+1);
V(:,j+1)=V(:,j+1) -V(: ,1:j)*g;
H(1:j,j)=h+g;
H(j+1,j)=norm(V(:,j+1));
V(:,j+1)=V(:,j+1)/H(j+1,j);
e1=eye(j+1); e1=e1 (: ,1);
y=H\(norm_b *e1);
xx =.........;
err(j)=norm(A*xx -b);

end
semilogy (err);

(b) Assume that we perform in total m = 30 iterations of flexible GMRES. Now
change the preconditioner in the previous script in a way that M(j, x) does
m− j + 1 steps of BiCGSTAB. Does the situation change? Notice that the
total complexity of the two script is the same.

(c) Now change the preconditioner in a way that M(j, x) does m steps of
BiCGSTAB (notice that this is still not a constant preconditioner). Does
the situation change? Notice that the total complexity is now increased. Do
we get any benefit in comparison with (b)?

(d) As you have noticed in the previous points (a) and (b), if we have the
preconditioners M1,M2,M3, . . . the order in which we use them is important.
After the point (a) and (b), can you reach any conclusion? It is better to use
“better” preconditioners at the first iterations and “worse” preconditioners at
the last iterations or vice-versa? Do you think this is a general property?
Test these ideas on a more changing matrix A.
Note: BiCGSTAB requires, as memory O(n) independently on the number
of iterations, whereas GMRES requires O(mn) memory. However, for many
problems BiCGSTAB may not work but still be a valid preconditioner and
GMRES may require too many iterations (and memory) without the usage
of a preconditioner.

Problem 1.11. Let us consider the linear system Ax = b. Consider the precon-
ditioned conjugate gradient method, given in Algorithm 9.1 of [237, Ch. 9], with
the symmetric positive definite preconditioner M = LLT , where L is the Choleksy
factor. Show that this method is equivalent to CG applied to the preconditioned
system L−1AL−Tu = L−1b where u = LTx.

Problem 1.12. Show that the spectra of the operators corresponding to left,
right and split preconditioning are identical, i.e., show that if the preconditioning
matrix M is factorized as M = LU then M−1A, AM−1 and L−1AU−1 have the
same eigenvalues.

1.4. PROBLEMS 15

Problem 1.13. Setup a sparse linear system of equations using FEM-solver
system FeNICS. You will need to install the Python framework for FeNICS. This
tutorial may be of use
https://fenicsproject.org/pub/tutorial/sphinx1/._ftut1004.html
This is not really related to this chapter, but the problem setup will serve as useful
example in later problems.

Problem 1.14. Setup a sparse linear system of equations to use as benchmark
problem using COMSOL. Examples and comsol-multiphysics files:

https://www.comsol.com/model/12385
https://www.comsol.com/model/8577
https://www.comsol.com/model/3576
https://www.comsol.com/model/847

Load in MATLAB the “eliminated stiffness matrix” from the file satellite.mph
which contains the discretization of the Poisson equation with domain the satellite
illustrated in the cover of this book. Test CG and GMRES applied to the linear
system defined by such matrix with random right-hand side.

Problem 1.15.

(a) Derive the following convergence bound on GMRES

‖rm‖
‖r0‖

≤ min
p∈P0

m

‖p(A)‖.

(b) By using the Cauchy integral formula [157, Definition 1.11], and what you
proved in the previous point, derive following convergence bound on GMRES

‖rm‖
‖r0‖

≤ Lε
2πε min

p∈P0
m

max
z∈Γε

‖p(z)‖.

This convergence bound is related to Theorem 1.7. Recall that the Cauchy
integral formula states that: if Γ ⊂ C in a closed smooth curve containing
all the eigenvalue of A ∈ Cn×n and if f(z) is analytic inside the contour of
Γ, then it holds

f(z) = 1
2πi

∮
Γ
f(z)(zI −A)−1dz.

Problem 1.16. Suppose that A ∈ Cn×n is diagonalizable as A = ZΛZ−1. Show
the the following bound on the residual of GMRES holds

‖rm‖
‖r0‖

≤ ‖K‖‖Kw‖ cond(K−1Z) min
p∈P0

m

max
λ∈σ(A)

|p(λ)|

where w = r0/‖r0‖ and K is any invertible matrix.

https://fenicsproject.org/pub/tutorial/sphinx1/._ftut1004.html
https://www.comsol.com/model/12385
https://www.comsol.com/model/8577
https://www.comsol.com/model/3576
https://www.comsol.com/model/847

16 CHAPTER 1. ITERATIVE SOLUTION METHODS

Problem 1.17. Show that the eigenvalues of the matrix Hm, obtained by extract-
ing the first m rows and columns from Hm generated in Algorithm 1 (GMRES),
belongs to the pseudospectra σHm(A).

Problem 1.18. Given A ∈ Cn×n we define the field of values as

W (A) := {z | z = v∗Av, v ∈ Cn, ‖v‖2 = 1}

Show that σε(A) ⊆W (A) +Dε.

Problem 1.19. We apply GMRES to the linear system Ax = b with precondi-
tioned P . Is it true that a necessary condition for P to be a good preconditioner
is that P ≈ A−1?

Problem 1.20. Given M,P ∈ Cn×n such that
∑m
j=0M

j = I, let us consider
A = MP . We apply GMRES to a linear system defined by the matrix A and we
use P as left preconditioner. Explain why GMRES will converge at most after m
iterations.

Chapter 2

General preconditioners
This first chapter on preconditioners contains a summary of several techniques
which can be useful on their own, but also form building blocks. The precondi-
tioners in this chapter do not take the origin of matrix into account, although the
effectiveness of the preconditioners depend heavily on certain matrix structures,
such as diagonal dominance or sparsity patterns. Most of the basic versions of
the techniques we present, e.g., Gauss–Seidel iterations and variations of the
LU-factorization, were developed quite long ago and were used as methods to
solve linear systems. These techniques are still very important, since approximate
variations can be effective preconditioners and reappear in other forms in later
chapters.

Literature

� Iterative methods:

– Classical iterations: sections 11.1 and 11.2 of [140]
– Basic iterative methods and splitting: sections 4.1 and 4.2 of [237]
– Special matrices: section 4.1 and 4.2 of [140]

� Sparse LU factorization:

– Graphs and matrices: sections 3.1 and 3.3 of [237]
– Incomplete LU factorization: sections 10.3 and 10.4 of [237]

Further reading
Iterative methods presented in this chapter are deeply analyzed in the books of
Greenbaum [146] and Barret [28]. Some of the methods discussed are based on
the concept of M-matrices. This class of matrices is often defined in different
ways depending on the context. Many equivalent definitions are collected in [218].
Other references on M-matrices are [51, 197]. More literature about ILU [24,
37, 54, 55, 58, 60, 80, 88, 89, 106, 121, 163, 164, 174, 234–236, 239, 240, 266, 271, 276]
and other incomplete factorizations [13, 15, 23, 42, 47, 78, 117, 118, 150, 165, 170,
172, 181, 188, 189, 195, 208, 225, 229, 252, 255, 260, 261], reordering/permutations
[9,62,66,98,99,107,111,137,138,169,213,275]. More methods based on reducing the
bandwidth by permutations are presented in [4,36,96,112–114,192,247]. Classical
iterative methods such as Jacobi, Gauss–Seidel, SOR, etc, and their variations are
deeper analyzed in [10].

17

18 CHAPTER 2. GENERAL PRECONDITIONERS

2.1 Basic iterative methods
In this section we consider linear systems of the form

Ax = b, where A ∈ Rn×n, b ∈ Rn. (2.1)

In particular we assume that n is large and it is computationally expensive to use
direct methods for solving (2.1), e.g., Gaussian elimination, but reasonably cheap
to compute the matrix-vector product with A, e.g., because A is sparse or has other
exploitable structures. Basic iterative methods arise from situation where it is
desired to solve, or approximately solve, linear systems on the form (2.1). The idea
is to start from an initial approximation of the solution and successively improve
one or several components of the solution at each iteration. The techniques in the
basic methods might not be used so often by themselves, however they constitute
some important ideas which combined with other methods can make them more
efficient. Here we give a brief introduction to mainly three basic iterative methods
together with some theoretical results which provide convergences guarantees. For
a throughout introduction we refer to the material mentioned above.

Jacobi, Gauss–Seidel and SOR
The three most well-known basic iterative methods are Jacobi, Gauss–Seidel and
successive over relaxation (SOR). These methods are introduced in this section on
“component form” and on “matrix form” to illustrate their individual structure
and their differences. The matrix form will then also be used to put these basic
iterative methods in the context of fixed-point iterations for which an extensive
theoretical foundation exist. The matrix form utilizes the decomposition

A = D − E − F, (2.2)

where D is the diagonal of A, −E and −F is it the strict lower triangular part
respectively the strict upper triangular part, i.e.,

A =


. . . −F

D

−E . . .

 .

Equation (2.1) can on component form be written as

aiixi +
∑
j 6=i

aijxj = bi, i = 1, . . . , n, (2.3)

and with the decomposition of (2.2) as Dx− Ex− Fx = b.

2.1. BASIC ITERATIVE METHODS 19

Jacobi

In Jacobi iterations a sweep over all components i is performed at every iteration
k. The update on component form is obtained by solving for xi in (2.3) and can
be written as

xk+1
i = 1

aii

−∑
j 6=i

aijx
k
j + bi

 , i = 1, . . . , n,

or equivalently
xk+1 = D−1(E + F)xk +D−1b.

Gauss–Seidel

Note that for components 1 < i ≤ n newer information is available in terms of
the previously computed components. The idea in Gauss–Siedel is to use this
information instead, this leads to the component form

xk+1
i = 1

aii

− i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j + bi

 , i = 1, . . . , n, (2.4)

which can be written as

Dxk+1 = Exk+1 + Fxk + b.

Solving for xk+1 gives the Gauss–Seidel matrix form update

xk+1 = (D − E)−1Fxk + (D − E)−1b.

Successive over relaxation (SOR)

The SOR update can be viewed in various ways. One is to relate it to the
component-wise Gauss–Seidel update in (2.4). Addition and subtraction of xki on
the right-hand-side of (2.4) gives

xk+1
i = xki + 1

aii

− i−1∑
j=1

aijx
k+1
j −

n∑
j=i

aijx
k
j + bi

 , i = 1, . . . , n.

A relaxation parameter ω is then introduced as

xk+1
i = xki + ω

1
aii

− i−1∑
j=1

aijx
k+1
j −

n∑
j=i

aijx
k
j + bi

 , i = 1, . . . , n,

20 CHAPTER 2. GENERAL PRECONDITIONERS

which gives the SOR component form

xk+1
i = (1−ω)xki +ω

1
aii

− i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j + bi

 , i = 1, . . . , n. (2.5)

The second term in the right-hand-side of (2.5) is (2.4), i.e. the Gauss–Seidel
update. In consequence, the SOR update may be viewed as xk+1

i = (1− ω)xki +
ωxGSi , i = 1, . . . , n, where xGSi is given by (2.4). The choice ω = 1 gives Gauss–
Seidel whereas, 0 < ω < 1 corresponds to an under relaxed update and 1 < ω < 2
corresponds to a over relaxed update. For the corresponding matrix form, note
that (2.5) is with the decomposition of (2.2) equivalent to

Dxk+1 = (1− ω)Dxk + ω(Exk+1 + Fxk + b).

Solving for xk+1 gives the SOR matrix form update

xk+1 = (D − ωE)−1 (ωF + (1− ω)D)xk + ω(D − ωE)−1b. (2.6)

Another approach is to consider (2.1) scaled by ω, i.e. ωAx = ωb, while noting
that

ωA = ω(D − E − F) +D −D = (D − ωE)− (ωF + (1− ω)D).

With the corresponding partition of components this directly gives the SOR update
in (2.6). A symmetric successive over relaxed (SSOR) can also be defined and
consist of one regular SOR step combined with a backward step as

xk+1/2 = (D − ωE)−1 (ωF + (1− ω)D)xk + ω(D − ωE)−1b,

xk+1 = (D − ωF)−1 (ωE + (1− ω)D)xk+1/2 + ω(D − ωF)−1b. (2.7)

Fixed-point and precondition view-point
Basic iterative methods can also be viewed as fixed-point iterations. The fixed-
point view yields a straightforward connection to preconditioning and convergence
results. Let M,N define the splitting such that A = M −N . Equation (2.1) is
then equivalent to Mx+Nx = b. If M is nonsingular, solutions may be generated
as

xk+1 = M−1Nxk +M−1b. (2.8)
The choice G = M−1N and f = M−1b gives

xk+1 = Gxk + f. (2.9)

Let us define the linear function φ(x) := Gx+ f ; if xk converges to x with (2.9)
then x is a fixed point of φ and satisfies

x = Gx+ f, or (I −G)x = f. (2.10)

2.1. BASIC ITERATIVE METHODS 21

By using that (I −G) = I −M−1N = I −M−1(M −A) = M−1A, (2.10) can be
written as

M−1Ax = M−1b. (2.11)
The fixed-point iteration (2.8), or equivalently (2.9), may thus be seen as a
fixed-point iteration on the preconditioned system (2.11).

The relation between specific splitting matrices M,N and the decomposition
matrices D,E, and F in Section 2.1 for the different methods are summarized in
Table 2.1.

Table 2.1: Relation between the different splittings of A and G.

M N G
Jacobi D E + F I −D−1A
Gauss–Seidel D − E F I − (D − E)−1A
SOR 1

ω (D − ωE) 1
ω (F + (1− ω)D) I − ω(D − ωE)−1A

In general there are not many restrictions on how to choose the splitting
A = M − N as long as M is nonsingular and the sequence (2.8) is convergent.
Primarily, the aim is to choose M such that it approximates A in some sense and
such that equations on the form Mz = d are relatively easy to solve.

Convergence
The fixed-point view and its standard convergence results provide conditions on
the splitting matrices M,N , and hence also on G, for convergence. In consequence,
these results provide conditions for convergence of the basic iterative methods of
Section 2.1.

A standard illustrative example, which can be found in Saad [237, s. 4.2.1], is
the following. A fixed point x∗ satisfies (2.10). Subtraction of (2.9) from (2.10)
gives

xk+1 − x∗ = G(xk − x∗) = · · · = Gk+1(x0 − x∗),
and it follows that xk converges to x∗ if and only if the spectral radius of G is less
than one. This result is formalized in the following theorem.

Theorem 2.1 ([237, Theorem 4.1]). Let G ∈ Rn×n be such that ρ(G) < 1. Then
I−G is nonsingular and the iteration (2.9) converges for any f and x0. Conversely,
if the iteration (2.9) converges for every f and x0, then ρ(G) < 1.

The above result can also be stated in terms of the splitting matrices M and
N as follows.

Theorem 2.2 ([140, Theorem 11.2.1]). Suppose A = M −N is a splitting of a
nonsingular matrix A ∈ Rn×n. Assuming M is nonsingular then the iteration
(2.8) converges to x = A−1b for all x0 if and only if ρ(M−1N) < 1.

22 CHAPTER 2. GENERAL PRECONDITIONERS

Theorem 2.1 and Theorem 2.2 provide necessary and sufficient conditions
on M , N and G such that the fixed-point iterations of (2.8) respectively (2.9)
converge. The spectral radius may be computationally expensive to compute.
Instead, sufficient conditions can be considered, e.g. ρ(M−1N) ≤ ‖M−1N‖ < 1,
which holds for any norm. Alternatively, conditions such that ρ(M−1N) < 1 can
also be given with the concept of regular splittings, see Definition 2.3. One such
condition is given in Theorem 2.4 below.

Definition 2.3 (Regular splitting). For a given matrix A ∈ Rn×n let the splitting
M,N be defined by A = M −N . The splitting M , N is a regular splitting of A if
M is nonsingular and M−1, N are non-negative.

Theorem 2.4 ([237, Theorem 4.4]). Let A = M −N be a regular splitting of a
nonsingular matrix A ∈ Rn×n. Then ρ(M−1N) < 1 if and only if A is nonsingular
and A−1 is nonnegative.

From Theorem 2.4 it follows that the iterations of (2.9) converges if M,N is a
regular splitting of an M -matrix, see Definition 2.5.

Definition 2.5 (M-matrix). A matrix A ∈ Rn×n is an M-matrix if A = sI −B,
where bij ≥ 0 and s ≥ ρ(B), where ρ(B) is the spectral radius of B, i.e., the
maximum moduli of the eigenvalues of B.

2.2 LU factorization and sparse matrices
In this section sparse matrices and preservation of sparsity will be key. This is
simply because for a general matrix A ∈ Rn×n a matrix vector product costs O(n2)
operations for a dense matrix, but for a sparse matrix the cost is proportional
to the number of non-zero elements. Hence there is potentially a lot to gain by
preserving sparsity in the computations.

LU factorization and fill-in
The goal of the LU factorization is to write a matrix A ∈ Rn×n as the product
of an upper triangular matrix U ∈ Rn×n and a unit lower triangular matrix
L ∈ Rn×n, where with unit lower triangular we mean that the diagonal elements
are 1. The goal is hence to write A = LU and, instead of solving a linear system
with A, we solve two linear systems with L and U . Triangular linear systems can
be efficiently solved by backward substitution. The LU factorization appears in
connection with Gaussian elimination. In each step of the elimination, there is
a leading entry which is called pivot. This pivot needs to be non-zero in order
to continue the elimination. Although the matrix is nonsingular, it might be the
case that some pivots will be zero and hence there are techniques, called pivoting,
that rearranges the rows and the columns to continue the elimination. From a

2.2. LU FACTORIZATION AND SPARSE MATRICES 23

numerical point of view a small but non-zero element may also cause trouble.
However, we will not consider this further and henceforth only consider pivoting
as a tool for minimizing fill-in, see below. In the case of a non-pivoted matrix the
following can be said.

Theorem 2.6 ([140, Theorem 3.2.1]). If A ∈ Rn×n and det(A(1 : k, 1 : k)) 6= 0
for k = 1, 2, . . . , n. Then there exist a unique unit lower triangular L ∈ Rn×n and
upper triangular U ∈ Rn×n such that A = LU .

Specifically one can also talk about the structure of L and U .

Proposition 2.7. Under the assumptions of Theorem 2.6 consider the factoriza-
tion A = LU . Then U is the upper triangular matrix created in the first pass of
Gaussian elimination. Furthermore, the k-th column of L contains the multipliers
arising in the k-th step of the first pass the elimination.

In the context of LU factorization and sparse matrices, the following definition
will be important to characterize performance.

Definition 2.8 (Fill-in). Consider a matrix A ∈ Rn×n under the assumptions
of Theorem 2.6, and let A = LU be the unique LU factorization. The fill-in is
defined as the number of non-zero elements in |L| + |U | minus the number of
non-zero elements in A, where | · | denotes the element-wise absolute value.

The reason for the element-wise absolute value in Definition 2.8 is because we
are not interested in the sum L + U , but rather a measure of how many more
non-zero elements we have after factorization. The terminology a fill-in is also
used to describe an element which is zero in A but non-zero in |L|+ |U |. A low
fill-in is desired since that means a smaller amount of memory and computation
power is required to treat the problem. Note that a fill-in in one step of the
algorithm may be cancelled in a later step. However, this seldom happens in
practice. The fill-in can be determined without knowledge of the exact values of
the matrix, but only of the non-zero pattern. Moreover, the fill-in depends on the
order of rows and columns. Namely, fill-in can be reduced by properly permuting
the rows and columns of the matrix A. This is illustrated in the following example.

Example 2.9 (The arrow matrix [140, s. 11.1.3][237, ex. 3.3]). Consider the two
matrices

A =


a b c d e
b f 0 0 0
c 0 g 0 0
d 0 0 h 0
e 0 0 0 i

 and Â =


i 0 0 0 e
0 f 0 0 b
0 0 g 0 c
0 0 0 h d
e b c d a

 .

The matrices are similar, even permutation-similar. However, if one applies
Gaussian elimination to A, the resulting factors L and U are full matrices. Even

24 CHAPTER 2. GENERAL PRECONDITIONERS

worse, after only one step in the elimination, the remaining matrix is full. On the
contrary, for the matrix Â there is very little computation needed to complete
the Gaussian elimination and the result will have no fill-in. Hence there is a lot
of extra storage and computation power required to do an LU factorization of A
compared to one of Â, although they are equivalent representations of the same
linear system.

Motivated by the enormous differences in Example 2.9, the problem at hand
is this to find a permutation matrix P that minimizes the fill-in in the LU
factorization of PAPT . However, this is a combinatorial optimization problem
and thus expensive to solve. Hence we resort to heuristics based on graph theory.
From now we assume that the matrix A is an M-matrix, see Definition 2.5.

Sparse matrices and graphs
In order to get to the main points, we start by introducing some common concepts
from graph theory, and naturally we start with the graph itself.

Definition 2.10 (Graph, nodes, and edges). Consider a finite set of nodes,
V = {v1, v2, . . . , vn}. An edge, e = (vi, vj), defines a relation between the two
nodes vi, vj ∈ V . A graph is defined as the pair G = (V,E).

We denote by |V | the cardinality of V , i.e., the number of elements in V . The
set V can contain any objects, and we will think of them as labels of the nodes in
the graph. Without loss of generality we can assume V ⊂ N and for our situation
we will think of it as V = {1, 2, . . . , n} for some n. Also note that E ⊆ V × V .
On a higher level one can distinguish two main types of graphs, directed and
undirected.

Definition 2.11 (Undirected graph). A graph is called undirected if (vi, vj) ∈ E
implies that (vj , vi) ∈ E for all vi, vj ∈ V .

Definition 2.12 (Directed graph). A graph is called directed if it is not undirected.
A directed graph is also known as a digraph.

The undirected graph can be described as the relation depicted by E. The set
E has a symmetry property, i.e., the pair e = (vi, vj) ∈ E is unordered. Whereas
the directed graph represents a non-symmetric relation. For a directed graph
there is hence a difference between an outgoing edge, leaving the node, and an
incoming edge, entering the node. It is possible to define multiple matrices related
to a graph, we will make use of the adjacency matrix.

Definition 2.13 (Adjacency matrix). Consider a graph G = (V,E) with |V | = n,
its adjacency matrix H ∈ Rn×n G is defined as

aij =
{

0 (vi, vj) /∈ E
non-zero (vi, vj) ∈ E.

2.2. LU FACTORIZATION AND SPARSE MATRICES 25

1 2

34

Figure 2.1: The directed graph from Example 2.14. What does the adjacency
matrix look like?

In some cases the non-zero elements are taken to be all 1:s in which case we
have a binary adjacency matrix, and in other they are representing some weight of
the corresponding edge. Note that an undirected graph gives rise to a symmetric
adjacency matrix, and a directed graph to a non-symmetric. From the definition
we can see that an outgoing edge from node i is represented by a non-zero element
in row i and an incoming edge to node i is represented by a non-zero element in
column i.

Example 2.14. Consider the graph in Figure 2.1. We have that V = {1, 2, 3, 4},
and E = {(1, 2), (2, 3), (3, 2), (3, 4), (4, 1)}. The graph is directed and the adjacency
matrix H is given by

H =


∗ ∗ 0 0
0 ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 0 ∗

 .

In analogy with the adjacency matrix, one can also define the graph of a
matrix.

Definition 2.15 (Graph of a matrix). Consider a matrix A ∈ Rn×n. The graph
G = (V,E) associated with the matrix A is defined by V = {1, 2, . . . , n} and
(i, j) ∈ E if and only if the element aij 6= 0.

Since we are interested in M-matrices, we have matrices with non-zero diagonals.
Technically this means that in the graph we should have edges (vi, vi) ∈ E for all
vi ∈ V . However, these are typically not drawn explicitly but implicitly assumed to
be there. Intuitively we can understand that a sparse matrix has a corresponding
graph with few edges. It is thus of interest to preserve this sparsity among edges
during an elimination, and in the next section we will get back to how elimination
in a matrix affects the graph. First we discuss topics related to connectivity of a
graph.

26 CHAPTER 2. GENERAL PRECONDITIONERS

1

2

3

4

5

b

c

d

e

(a) Graph of matrix A.

5

2

3

4

1

b

c

d

e

(b) Graph of matrix Â.

Figure 2.2: Graphs of the matrices A and Â from Example 2.9.

Definition 2.16 (Path). A path in a graph is a sequence of nodes in the graph,
vj1 , vj2 , . . . , vjk+1 ∈ V , such that (vji

, vji+1) ∈ E for i = 1, 2, 3, . . . , k, and all the
nodes are unique, i.e., vji 6= vj`

for i 6= `. If the path consists of k + 1 nodes, i.e.,
passes k edges, it is said to be of length k.

Definition 2.17 (Distance). The distance between vi and vj is defined as

d(vi, vj) = min {k such that it exists a path of length k between vi and vj .}

With these definition we then say that graph is connected if there is a path
between any pair of nodes and disconnected if it is not connected. Specifically
and undirected graph is disconnected if and only if the corresponding adjacency
matrix is permutation-similar to a block-diagonal matrix. Another interesting
property is described in the following proposition, from which the intuition will
be useful when discussing level-of-fill in the context of ILU in later sections.

Proposition 2.18. Let H be a binary adjacency matrix. Then element (i, j) of
Hk is non-zero if and only if there exists at least one path of length k between
node i and node j.

Proof. See Problem 2.14.

Example 2.19 (Graph of the arrow matrix). Consider the arrow matrix A from
Example 2.9, as well as the permuted matrix Â. The graph of A is given in
Figure 2.2(a) and the graph of Â in Figure 2.2(b). From Example 2.9 we know
that A and Â are permutation similar, and comparing the graphs in Figure 2.2(a)
and 2.2(b) we can see that these are very similar.

2.2. LU FACTORIZATION AND SPARSE MATRICES 27

In the example above we can note the following feature. Reordering rows and
columns in the matrix is equivalent to renumber the nodes in the graph. This idea
leads to the following proposition, which will have a key role in the reordering
techniques in the next section.

Proposition 2.20 (Symmetric permutation and graphs). Let H be an adjacency
matrix and P a permutation matrix. Then B = PHPT has the same graph as H
but with the labels reordered.

Proof. See Problem 2.15.

Reordering techniques
Given a matrix A and a permutation P we have seen that A and PAPT can have
vastly different fill-in, and that the corresponding graphs are the same but with
relabelling of the nodes. We now connect the dots with how Gaussian elimination
affects the graph of a matrix and how heuristics based on relabelling techniques in
graphs can be used to construct efficient permutation matrices P . We start with
the former.

Gaussian elimination starts from lower numbered nodes, and works towards
higher numbered nodes. We observe the process after k−1 steps and are interested
in the remaining matrix of size (n − k) × (n − k), and we want it to be sparse.
Consider an index ` > k. In the elimination step, row ` will keep all its non-zero
elements (no cancellation) and the non-zero elements of row k will be introduced.
In terms of fill-in, one can thus say that fill-in in created when row k eliminates row
`, and there are non-zero elements in row k that do not exist in row ` (observe that
we always assume that the diagonal elements are non-zero). Hence, considering
matrix A from Example 2.9, one step of the LU factorization will give a lot of
fill-in since the first row has many non-zero elements of which most are zero in
the rows below. Equivalently, from a graph perspective, we are interested in the
remaining graph where the first k− 1 nodes has been removed and edges modified
accordingly, and we want this to have few edges, i.e., in some sense be sparse. In
the elimination step, node ` will keep all its previous neighbours (no cancellation)
and get all the neighbours of node k. Hence the fill-in introduced corresponds to
node k giving new neighbours to node `. Thus in the context of Example 2.19 we
get that A will give a lot of fill-in since in the graph the node labelled “1” has
many neighbours which the following nodes do not have.

Minimum degree ordering

The minimum degree ordering is a greedy algorithm. It tries to minimize the fill-in
in each step of Gaussian elimination by simply choosing the node with smallest
(out-)degree, i.e. node with fewest (outgoing) edges. This node is moved to the
top, the elimination, or a simulation thereof, is done, and the algorithm proceeds.

28 CHAPTER 2. GENERAL PRECONDITIONERS

An equivalent motivation of the heuristics is that in each step the pivot is chosen
as the row with fewest non-zero elements. This method can be implemented either
as a pre-processor to find a permutation before the elimination, or it can be used
on-line during the elimination.

Reverse Cuthill–McKee ordering

The reverse Cuthill–McKee ordering is based on the Cuthill–McKee ordering and
the observation that reversing the order suggested by the latter typically results
in less fill-in. The Cuthill–McKee ordering is a heuristic to minimize the profile of
the matrix.

Definition 2.21 (Profile). For a symmetric matrix A ∈ Rn×n the profile, f(A),
is defined as

f(A) := n+
n∑
i=1

(i− fi(A)),

where fi(A) := min{j : 1 ≤ j ≤ i, aij 6= 0}.

Example 2.22. Consider the matrices A and Â from Example 2.9. These have
profiles f(A) = 5 + (1 − 1) + (2 − 1) + (3 − 1) + (4 − 1) + (5 − 1) = 15, and
f(Â) = 5 + (1− 1) + (2− 2) + (3− 3) + (4− 4) + (5− 1) = 9. Hence although the
matrices have the same bandwidth, Â has the non-zero elements further down,
and hence also further to the right, which results in a smaller profile.

Essentially the algorithm for computing the Cuthill–McKee ordering is a
breadth-first search of the graph, given some initial starting node. The difference
is in how the starting node is chosen and the exact order in which the nodes are
visited. The breadth-first search will implicitly construct sets of nodes, called
level sets, based on the shortest path from the starting node to the corresponding
nodes. Specifically, in the Cuthill–McKee algorithm these level sets are explicitly
constructed and used to achieve the ordering. The algorithm is presented as
Algorithm 5.

Different versions of the algorithm have different ways of choosing the starting
node in Step 1. Some ways to choose a starting node are:

• Greedy choice: start with the node of smallest (out-)degree

• Brute force: test all possible starting nodes and use the one which gives the
smallest profile

• Greedy/Brute: test the m� n nodes with smallest (out-)degrees and choose
the one which gives the smallest profile

2.3. INCOMPLETE LU FACTORIZATION 29

Algorithm 5: Cuthill–McKee
input : A graph G = (V,E)
output : A list with the new ordering

1 Choose a starting node v and label it “1”
Set S0 = {v}, i = 0, k = 2
while Si 6= ∅ do

2 Si+1 = ∅
3 Sort Si in descending order based on out-degree

for v ∈ Si do
4 Label v with the lowest available number k
5 Increment k = k + 1
6 Si+1 = Si+1 ∪ {Neighbours of v not previously labelled}

end
7 i = i+ 1

end
8 return A list with the mapping from old label to new label

• Pseudoperipheral Node: A peripheral node is a node who’s maximum distance
to another node in the graph is equal to the diameter1 of the graph. A
pseudoperipheral node has a maximum distance to another node which is
close to the diameter. Figuratively speaking these nodes are “far away” from
the center of the graph. One way of finding such nodes is to start from
a random node, do a breadth-first-search to find the node furthest away,
choose this node and repeat until the maximum distance found is no longer
increasing. For further reference, see, e.g., the paper [136].

2.3 Incomplete LU factorization
As the name suggests, the incomplete LU factorization, also known as ILU , is
an inexact factorization of a matrix A ∈ Rn×n in the sense that A = LU − R,
where R is a non-zero residual matrix. The goal is to, by removing steps and
computations from the Gaussian elimination, create a cheaply computable, yet
hopefully efficient, preconditioner.

The simplest ILU factorization is known as ILU(0) and it can be loosely
described as not allowing any fill-in. More precisely, the ILU(0) is computed using
Gaussian elimination with the extra criteria that if aij = 0 then all operations
involving the index pair (i, j) are skipped. That is to say, none of the fill-
in generated in the full Gaussian elimination is regarded at any step of the
computation of ILU(0). In more general terms it can also be phrased as ILU(0)

1The diameter is the maximum distance between two nodes.

30 CHAPTER 2. GENERAL PRECONDITIONERS

and A has the same zero pattern. In relation to incomplete Gaussian elimination
of A we define a zero pattern P as a set of index pairs (i, j) such that; if (i, j) ∈ P ,
then all operations involving the index pair (i, j) are skipped in the Gaussian
elimination. In this context we define the ILUP as the ILU produced using the
zero pattern P. This class of factorizations is broad, and it is worth to point out
that some factorizations might not be well defined, since the Gaussian elimination
may break down, e.g., if (i, i) ∈ P for some i. However, we do know the following.

Theorem 2.23 ([237, Theorem 10.2]). Let A ∈ Rn×n be an M-matrix, and let
P be a zero pattern such that P ⊂ {(i, j)|i 6= j, 1 ≤ i, j ≤ n}. Then the ILUP
factorization A = LU −R is well defined and is a regular splitting of A.

Hence, as long as the zero pattern does not involve the diagonal, the ILUP
factorization can be used as a preconditioner. However, what is a good choice
of zero pattern? One choice is the ILU(p) factorizations, where p = 0 generates
the ILU(0), and where higher p means a more accurate factorization such that
for high enough p < ∞ we get back the full LU factorization. To define these
ILU(p) factorizations we go back to the concept of fill-in produced in Gaussian
elimination.

Definition 2.24 (Level of fill). Given a matrix A ∈ Rn×n, the level of fill is an
n× n integer matrix defined recursively as

levij :=
{

0 aij 6= 0 or i = j

∞ otherwise,

and each time the element is touched in the Gaussian elimination it is updated as

levij = min{levij , levik + levkj + 1}.

In the book of Saad [237] the level of fill is motivated by the fact that the size of
the elements should correspond to the level of fill, since the updates in the Gaussian
elimination process is of the type αij = αij − αikαkj , which we schematically can
think of as αlevij = αlevij − αlevikαlevkj , with α < 1 from diagonal dominance
of the M-matrices. For further intuition, the level of fill can be though of in a
shortest-path sense, cf. triangle operation and the Floyd–Warshall algorithm in,
e.g., [216]. The further we are, in some sense, form an original element, the smaller
the fill-in will be. The following example gives a similar characterization.

Example 2.25. Given a matrix A ∈ Rn×n assumed to have a unique LU factor-
ization A = LU , and let Â = |L|+ |U |. Then we have the following interpretation
of levij for A.

• levij = 0 if and only if the corresponding element aij is non-zero

• levij =∞ if and only if âi,j = 0, i.e., no fill-in occurred at this position

2.4. PROBLEMS 31

• Assuming no cancellation, then level of fill is 0 < levij < ∞ if and only if
aij = 0 and âi,j 6= 0, i.e., fill in has occurred. More specifically:

– If levij = 1, then the fill-in was generated directly by a non-zero element
in A

– If levij = 2, then the fill-in was generated indirectly, by an element
which is itself a fill-in, i.e., with levik = 1

Note that, the level of fill does not take into account how many non-zero
elements which affect the current element. Neither does it reflect if any other
element with higher level of fill is modifying the given element. Nevertheless, the
idea about the level of fill presented in Example 2.25 can in general be characterized
using the following concept of a fill-path.

Definition 2.26 (Fill-path). Given a graph with nodes V = {1, 2, . . . , n}. A
fill-path is a path between two nodes i and j such that all intermediate nodes k
fulfil k < min{i, j}.

Theorem 2.27 ([237, Theorem 10.6 and 10.7]). Given a matrix and its corre-
sponding graph. Fill-in occurs during Gaussian elimination at element (i, j) if and
only if there exists a fill-path between i and j. Moreover, levij = p < ∞ if and
only if there exists a fill-path between i and j and the shortest such fill-path is of
length p+ 1.

With the level of fill defined we now define the ILU(p) as an ILUP with
the specific zero pattern P = {(i, j)|levij > p}. In other words, the Gaussian
elimination only considers computations with elements that are, in the sense of
level of fill, close to an original element of the matrix A.

2.4 Problems
Problem 2.1. The iterations in Jacobi, Gauss–Seidel and SOR are often described
as Mxk+1 = Nxk + b.

(a) Describe how M and N relate to A for the different methods. What is
required for convergence?

(b) The equation can be rewritten as a fixed-point iteration. How does it look
like? How does the classical convergence criterion for fixed-point iterations
relate to the one above?

(c) Fixed-point iterations of this type can be rewritten as a Neumann series,
i.e., as yk =

∑k
i=0 zi, where z0 = M−1b and zi = M−1Nzi−1 for i = 1, 2,

Show that yk = xk if the fixed-point iteration is started with x−1 = 0.

32 CHAPTER 2. GENERAL PRECONDITIONERS

Problem 2.2. Jacobi method for diagonally dominant matrices.
A matrix A is called diagonally dominant if |ai,i| >

∑n
j=1j 6=i |ai,j |.

(a) Show that a sufficient condition for the convergence of the Jacobi method is
the diagonally dominance of the matrix A.

(b) The above is a sufficient condition for convergence. Show that it is not a
necessary condition, i.e., find an example where this condition is not satisfied
but Jacobi still converges.

Problem 2.3.

(a) What is a regular spliting?

(b) What is an M-matrix?

(c) How are the concepts in (a) and (b) related?

Problem 2.4. Carry out the Jacobi and the Gauss–Seidel method for this problem
n =10000; e = ones(n ,1);
A = spdiags ([e e -5*e e e], -2:2, n, n);
b=sin(pi *(1:n) ’);

Test also an hybrid method which consists of alternating one iteration of Jacobi
and one iteration of Gauss–Seidel. How many iterations are required to reach
accuracy 10−5? Provide the source code.

Problem 2.5. Given

B =

 62/45 91/45 −103/45
91/45 421/90 −194/45
−103/45 −194/45 409/90

 a =

2/3
1/3
2/3


let us consider the following iteration given as MATALB code
v = a; v = v/norm(v)
for i = 1:8

v = -B*v + a;
end

(a) Do the iterations converge? To what should it converge?

(b) What happens when 20 iterations are performed?

(c) What can we say in relation to Theorem 11.2.1 in [140]? Do we have a
contradiction? Which criteria are fulfilled and which are not? Try a different
starting vector. What happens? For which vectors does it work?

Hint: Consider the eigenvalues and eigenvectors of B. You can motivate your
reasoning in (b) by for example run the iteration in symbolic (put a “sym(...)”
around the definition of B and a)

2.4. PROBLEMS 33

Problem 2.6. Carry out the Jacobi and Gauss–Seidel method for the problem
defined by the following MATLAB code
n =100;
e = ones(n ,1);
A = spdiags ([e e -5*e e e], -2:2, n, n)
b=sin(pi *(1:n) ’)

Plot the residual during the ierations. Test the following different choices for
starting vector x0 = [1, . . . , 1] and x0 = b and discuss the results.

Problem 2.7. Consider the matrix A and the vector b generated by the MATLAB
code
n=100
A=diag (100* ones (1,n))+diag (10* ones (1,n -1) ,1) ...
+diag (10* ones (1,n -1) ,-1)-randn (n);
b=rand(n ,1);

and consider the fixed point iteration (2.8) applied to the two splitting given by
the MATLAB code
M1=diag(diag(A)); N1=M1 -A;
M2=diag(diag(A))+diag(diag(A , -1) ,-1)+diag(diag(A ,1) ,1); N2=M2 -A;

(a) To which method is equivalent the fixed point iteration (2.8) with the
splitting A = M1 −N1?

(b) Can the convergence of fixed point iteration (2.8) with the splitting A =
M1 −N1 be justified by a specific structure of the matrix A?

(c) Plot the converge of the fixed point iteration (2.8) for both splittings.

(d) Can the convergence of fixed point iteration (2.8) with the splitting A =
M2 −N2 be justified by a specific structure of the matrix A?

Problem 2.8. The classic SOR method is defined as xk+1 = (D − ωE)−1(ωF +
(1− ω)D)xk + ω(D − ωE)−1b. The backward SOR is instead defined as xk+1 =
(D−ωF)−1(ωE + (1−ω)D)xk +ω(D−ωF)−1b. The Symmetric SOR (SSOR) is
defined as a half-step with SOR and another half-step with backward SOR. Find
the recurrence relation xk+1 = Gωxk + fω and find the matrix M of the relation
Mxk+1 = Nxk + b for the SSOR.

Problem 2.9. The penalty method for solving PDEs with the matrix splitting.
A way to solve PDEs with complicated domains consists of imposing the boundary
conditions with the penalty method. In this problem we will go through this
application and we will show how this method naturally provides a matrix splitting.

Let us consider the following problem{
∆u(x, y) = 1 (x, y) ∈ Ω
u(x, y) = 0 (x, y) ∈ ∂Ω

34 CHAPTER 2. GENERAL PRECONDITIONERS

Where Ω is a complicated domain such that Ω ⊆ [−1, 1]2. An easy way to
approximate the solution of this PDE is to introduce the function

k(x, y) =
{
k̃ (x, y) 6∈ Ω
0 (x, y) ∈ Ω

where k̃ is a large number, e.g., 106. Then the solution of the original PDE can
be approximated with the solution of{

∆ũ(x, y) + k(x, y)ũ(x, y) = 1 (x, y) ∈ [−1, 1]2

ũ(x, y) = 0 (x, y) ∈ ∂[−1, 1]2

We will consider Ω = [−1, 1] \
{
x2 + y2 ≤ 1/10

}
(a) Show that the finite difference discretization of the last PDE can be written

in the form Ax = b with A = M −N . Give an expression for M and N . A
hint can be found in the next question.

(b) Complete the following MATLAB code for computing the matrices M ,N
and the vector b and solve the modified PDE.
n =100; e = ones(n ,1);
xx= linspace (-1,1,n); yy= linspace (-1,1,n); h=xx (2) -xx (1);
D =;
I = speye (n);
M = kron(D,I)+kron(I,D);
kk =1 e5; k=@(x,y) kk *(x.ˆ2+y.ˆ2 <1/10);
f=@(x,y);
[XX ,YY] = meshgrid (xx ,yy); KK=k(XX ,YY);
N = -spdiags (KK (:) , 0, nˆ2, nˆ2);
F =.................;
u=(M-N)\F(:); uu= reshape (u,n,n);
imagesc (xx ,yy ,uu); colorbar

(c) The linear system is naturally defined as a splitting. Does the iterative
method Mxk+1 = Nxk + b converges?

(d) Use the same method for the equation (x+ y)∆u(x, y) = 1 with the same
domain Ω. Does the iterative method Mxk+1 = Nxk + b converges? (You
need to compute the new matrices M and N)

Observe that it is very fast to solve the linear system My = z since the matrix
M is very sparse and structured. Moreover, in a direct discretization of the original
PDE, the computation of the discretized problem is more complicated.
A sharp answer is not required. It is fine to simply show some numerical experi-
ments and presenting an argument that justify the results. Try to use different
values of penalty parameter k̃ and different discretization parameter n (number of
discretization points).

2.4. PROBLEMS 35

Problem 2.10. Consider the matrix A generated by the following script
n =1000; e = ones(n ,1);
A = spdiags ([e 5*e e], -1:1, n, n); A = Aˆ2;

Consider the linear system Ax = b with b random vector, compare the convergence
of the iterative methods defined by the following matrix splittings:
• M1 = diagonal part of A and N1 = M1 −A,
• M2 = tridiagonal part of A and N2 = M2 −A.

Problem 2.11. A naive sparse LU factorization method
By using the ideas presented in Section 2.2, we can derive a naive algorithm for
performing a sparse LU factorization. More precisely, given a matrix A, we permute
the columns and rows with a permutation matrix P such that PAPT = LU with
L and U sparse.

The algorithm we propose is based on the following idea. We follow the
standard LU factorization method with a small variation. In the generic i-th
iteration of the LU method, before doing the Gaussian elimination of the current
sub-matrix, we sort the columns from the more sparse to the less sparse. More
precisely, in the Algorithm 3.2.1 of the Golub and Van Loan book [140], we sort
the columns of the matrix A(i:n,i:n) from the more sparse to the less sparse.

(a) You will need to implement a MATLAB function S=sparsity_pattern(A)
such that, given the matrix A, the output of this function is the matrix S
defined as

S(i, j) =
{

1 A(i, j) 6= 0
0 A(i, j) = 0

.

A quick way to implement this with handle functions is the following

sparsity_pattern=@(A) not(A==0).

(b) Complete the following MATLAB function (or write your own) that imple-
ments the naive sparse LU factorization
function [L, U] = sparse_lu (A)
n = size(A, 1); L = eye(n);
for k = 1 : n

AA=A (...........) ; % select the proper submatrix
[˜, idx]= sort(sum(sparsity_pattern (AA)) ,................) ;
AA=AA(idx ,idx);
A(k:n,k:n)=AA;
L(k + 1 : n, k) = A(k + 1 : n, k) / A(k, k);
for l = k + 1 : n

A(l, :) = A(l, :) - L(l, k) * A(k, :);
end

end
U = A;
end

36 CHAPTER 2. GENERAL PRECONDITIONERS

(c) Compute the naive sparse LU factorization of a random sparse matrix.
Compare with the standard LU implementation of MATLAB. How does the
naive algorithm perform? You can run the following script in MATLAB for
doing this test
n =200;
A = sprand (n,n ,0.01) + speye (n); A=full(A);
[L, U] = sparse_lu (A);
subplot (1 ,3 ,1)
spy(A)
title ("A")
subplot (1 ,3 ,2)
spy(abs(L) >1e -6)
title (" sparse L")
subplot (1 ,3 ,3)
spy(abs(U) >1e -6)
title (" sparse U")

figure
[L, U, P] = lu(A);
subplot (1 ,3 ,1)
spy(A)
title ("A")
subplot (1 ,3 ,2)
spy(abs(L) >1e -6)
title ("L")
subplot (1 ,3 ,3)
spy(abs(U) >1e -6)
title ("U")

(d) Compute the naive sparse LU factorization of an arrow matrix with the
same structure of the matrix A in Example 2.9. Compare with the standard
LU implementation of MATLAB. How does the naive algorithm perform?

(e) (Optional) Notice, in the current implementation of sparse_lu, we do not
provide the permutation matrix P . Modify the function in a way that P is
now given as output.

Problem 2.12.

(a) Describe the concept of level of fill, what is it? How is it connected to the
graph of a matrix?

(b) Plot the LU-factorization of the five-point finite difference stencil
n=10; e = ones(n ,1);
A = spdiags ([e -2*e e], -1:1, n, n); I = speye (n,n);
A = kron(I,A) + kron(A,I);

Plot the ILU(0) factorization of it.

(c) Write a script that computes the level of fill for the elements of this matrix.
Compare with the results in (b).

2.4. PROBLEMS 37

Problem 2.13. Consider the following MATLAB code:
B = rand (4); B = B+B ’;
B = B-diag(diag(B))+eye (4); M = kron(eye (3) ,B);

The matrix M denotes the adjacency matrix of graph with 12 nodes. If we
run the Cuthill–McKee ordering on M as described in Saad [237], Algorithm 3.2,
it gets stuck in an infinite loop? Why?
Hint: Structure of M .

Problem 2.14. Prove Proposition 2.18.
Hint: Use induction: What do we know about k = 1?.

Problem 2.15. Prove Proposition 2.20.
Hint: Any permutation matrix can be constructed from a sequence of transposi-
tions, see [159, s. 0.9.5].

Problem 2.16. Use the notion of graph separators to prove that the Cuthill–
McKee ordering gives a block-tridiagonal matrix.

Definition 2.28 (Graph separator). A graph separator is a set of nodes, such that
if these are removed the graph becomes disconnected with exactly two connected
components.

Hint: The reordering gives a new graph and a new adjacency matrix. What
does it mean to be a graph separator and how is it connected to the level sets?

Problem 2.17. A more challenging PDE: is ILU a valid preconditioner?
We consider the linear systems obtained by discretizing a certain PDE in a more
challenging domain. This problem is generated with FeNICS, with the following
Python script
from __future__ import print_function
from fenics import *
import matplotlib . pyplot as plt
from mshr import *
import scipy .io
from scipy .io import savemat
parameters [’linear_algebra_backend ’] = " Eigen "
parameters [’reorder_dofs_serial ’] = False

Create mesh and define function space
D1 = Rectangle (Point (0, 0) , Point (1.0 , 1.0))
D2 = Rectangle (Point (0.1 , 0.1) , Point (0.2 , 0.2))
D3 = Circle (Point (0.5 , 0.5) , 0.05)
D4 = Circle (Point (0.7 , 0.7) , 0.04)
D5 = Circle (Point (0.1 , 0.7) , 0.04)
domain = D1 - D2 - D3 - D4 - D5
mesh = generate_mesh (domain , 40)

V = FunctionSpace (mesh , ’P’, 2)

38 CHAPTER 2. GENERAL PRECONDITIONERS

Define boundary condition
u_D = 0

def boundary (x, on_boundary):
return on_boundary

bc = DirichletBC (V, u_D , boundary)

Define variational problem
u = TrialFunction (V)
v = TestFunction (V)
f = Constant (-6.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

Compute solution
u = Function (V)
solve (a == L, u, bc)

Plot solution and mesh (uncomment to see the plot)
#plot(u)
#plot(mesh)
#plt.show ()

Assemble matrix
A, b = assemble_system (a, L, bc);
rows ,cols ,vals = as_backend_type (A).data () # Get CSR data
A = as_backend_type (A). sparray ()
savemat (’pde_gen_mat .mat ’, {’A’: A,’b’:b. array () })

The script produce a matrix which can be loaded in MATLAB. In the Figure 2.3
is showed the solution, the domain and the grid.

(a) By reading the python script describe the problem we are solving and the
various settings we used.

(b) By running the python script it is generated a MATLAB file called
pde gen mat that contains the matrix A and the vector b defining the
linear systems associated to this PDE. Is this linear system sparse? Will the
LU factorization be sparse?

(c) Use the sparse reverse Cuthill–McKee ordering (implemented in MATLAB).
See the function symrcm. How does it look this matrix after the reordering?
Will the LU factorization be sparse?

(d) Solve, in MATLAB, the linear systems Ax = b with the following steps:

– Perform a sparse reverse Cuthill–McKee ordering.
– Generate an ILU factorization with the following settings

setup .type = ’crout ’;
setup .milu = ’row ’;
setup . droptol = 0.1;

2.4. PROBLEMS 39

Figure 2.3: Numerical solution to the PDE described in Problem 2.17

– Use GMRES with the ILU preconditioner.

Did you menage to solve the linear system? Compare the convergence of
GMRES with and without the ILU preconditioner.

Problem 2.18. Consider the matrix A with the structure

A =


× × × ×
× ×

× × ×
× × × ×

× × ×
× × × ×

 .

Suppose LU-factorization without pivoting is used to factorize A. Predict in which
positions there will be fill-in.

Problem 2.19. Incomplete LU-factorization is often described as A = LU −R.
Describe what L, U , and R are. How do they look for ILU(0) and what is the
difference for ILU(1)?

Problem 2.20. Roughly describe modified ILU (MILU), what are the general
ideas? The MILU in implemented in MATALB as variation of the ILU. What

40 CHAPTER 2. GENERAL PRECONDITIONERS

is the difference of performing MILU versus ILU(0)? Explain this by giving an
example. You may for instance consider the matrix A generated by the code below
but you are very welcome to use a matrix with a structure that you find more
interesting.
n=4; e = ones(n ,1); A = spdiags ([e -2*e e], -1:1, n, n);
I = speye (n,n); A = kron(I,A) + kron(A,I);

Chapter 3

Preconditioning for
Helmholtz equation
The Helmholtz equation is a fundamental equation in physics and engineering,
since it characterizes the propagation of waves, e.g., acoustic waves. This chapter
summarizes preconditioners specifically designed for matrices stemming from the
discretization of the Helmholtz equation. In particular we describe the techniques
based on shifting the problem, which can lead to a damped variation of the
equation still approximating important properties such that it can be used as a
preconditioner. We also describe sweeping preconditioners and absorbing boundary
conditions.

Literature

� Shifted Laplacian:

– Overview: damping, eigenvalues, etc [123]
– Shifted Laplacian for FEM discretization: [134]
– Two grid preconditioning with eigenvectors: [204]

� Sweeping preconditioner:

– LDLT factorization: section 4.1 of [140]
– Perfectly Matched Layers (PML) and Absorbing Boundary Conditions

(ABC): [228] [168]
– Sweeping Preconditioner and hierarchical matrices: [122]

Further reading
Hierarchical matrices relevant for Helmholtz equation are presented in an extended
way in the books [29] [153]. Software is also available, e.g., the C library HLib. An
analysis of the weak formulation of the Helmholtz equation is presented in [202].
H-matrices are discussed also in [16, 264]. More preconditioners for the Helmholtz
equation are presented in [59,193,194].

41

42 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

3.1 Damping and oscillations
We consider the following instance of the Helmholtz equation{

∆u+ κ2(1 + εi)u = f

u
∣∣
∂Ω = g

(3.1)

where Ω ⊆ Cd is a compact set and κ ∈ C. The equation (3.1) is used to model the
propagation of waves through a medium. The constant κ, which is referred to as
wavenumber , and the constant ε depend on the material properties of the medium.
For reason which will be clear in the next section, this equation is difficult to solve
when κ is large and ε is small (or zero). We will now review some of the properties
of the solution of equation (3.1). In order to simplify the exposition, some of the
properties are illustrated for mono-dimensional examples.

Oscillation of the solutions
The larger is κ, the more the solution to (3.1) oscillates. We show this feature in
the homogeneous mono-dimensional case, in particular we set Ω = [0, 1] ⊂ R and
f = 0. The equation (3.1) becomes

u′′(x) + κ2(1 + εi)u(x) = 0
u(0) = u0

u(1) = u1

(3.2)

The solution to this problem is

u(x) = Aeiκ
√

1+εix +Be−iκ
√

1+εix (3.3)

Let us now assume that ε = 0; then we can express

u(x) = A sin(κx) +B cos(κx) (3.4)

The values of the constants A and B are obtained by imposing the boundary
conditions. In Figure 3.1 is illustrated the typical solution to (3.2) for ε = 0.

Damping of the solution to the Helmholtz equation with
complex wavenumber
We now use the concept of damping. We say that an oscillating function f(x)
is damping, if the amplitude of the oscillations f(x) tends to reduce. When the
wavenumber κ is complex, the solution to the Helmholtz equation is damping in

3.1. DAMPING AND OSCILLATIONS 43

0 5 10

−1

0

1
2π/κ

x

y

Figure 3.1: Solution 1D Helmholtz
equation (periodic)

−1 0 1
0

0.5

1

x

|u
(x

)|

Figure 3.2: Solution 1D Helmholtz
equation (damping)

certain regions of the domain. We illustrated this with in the mono-dimensional
case. Let us consider 

u′′(x) + κ2(1 + εi)u(x) = 0
u(0) = 1
lim
x→∞

u(x) = 0.
(3.5)

The solution to (3.5) is damping at infinity, namely the amplitude of the oscillations
reduces going to infinity, see Problem 3.2 for more details. In general, if Ω is
a compact domain, the solution is damping in the middle of the domain. See
Figure 3.2 where the domain of is Ω = [−1, 1] and the boundary values are equal
to one.

Methods and discretization techniques used for solving the Helmholtz equation
should be based on the known features of the solution which we discussed above.
An overview of these aspects is given below.

• If κ is large and ε small, the solution oscillates with frequency 2π/κ. A
numerical method based on domain discretization has to be able to cap-
ture these oscillations. For example, in a finite difference approach, the
discretization step has to fulfill h < 2π/κ, which is very small if κ is large.

• If ε is complex, the solution is more regular thanks to the damping effect.
In particular, the solution is almost constant in the middle of the domain.
There are methods that can exploit such regularity, e.g. multigrid methods.
In particular, the larger is ε, the easier is to solve the problem.

• The larger is κ the higher is the frequency of the oscillations, the larger is ε
the faster is the damping. Therefore, a favorable situation is κ small and ε
large.

44 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

3.2 The two grids method
We now present an approach inspired by the ideas discussed in [204]. We consider
the Helmholtz equation in one dimension

u′′(x) + κ2(1 + εi)u(x) = f(x)
u(0) = A

u(1) = B

(3.6)

We approximate the solution to this equation by the finite difference method. Let
0 = x1 < x2 < · · · < xN = 1 be an uniform (fine) grid such that xi+1 − xi = h for
i = 1, . . . , N−1. We use the finite difference discretization of the second derivative
given by

u′′(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

h2 .

The finite difference discretization results in the linear system [D+κ2(1+εi)E]u = f
where

D :=



1
−1/h2 2/h2 −1/h2

−1/h2 2/h2 −1/h2

.
−1/h2 2/h2 −1/h2

1


, f :=



A
f(x2)
f(x3)

...
f(xN−1)

B


,

E :=



0
1

1
. . .

1
0


, u :=



u1
u2
u3
...

uN−1
uN


.

Let us denote by Au = f such linear system. The idea behind the two grids
method is to consider a coarse grid for approximating the solution. In particular,
let us consider the coarse grid

0 = x̃1 < x̃2 < · · · < x̃Ñ = 1 with h̃ = x̃i+1 − x̃i
where Ñ < N . Let Ãũ = f̃ be the corresponding linear system. Then u, solution
of the original linear system, can be approximated by interpolating ũ in the fine
grid. Clearly, we obtain a good approximation only if the solution to (3.6) does
not oscillate too much, namely κ is not large. This approach is then used as
preconditioner. More precisely, given the linear system Au = b, then we consider
the preconditioner which consists of the following procedure

3.3. SHIFTED-LAPLACIAN PRECONDITIONER 45

• compute b̃ by interpolating b on the coarse grid (implicit assumption bj ≈
b(xj)),

• solve Ãũ = b̃,

• compute an approximation to u by interpolating ũ on the fine grid.

3.3 Shifted-Laplacian preconditioner
We now consider the Helmholtz equation with real wavenumber{

∆u+ κ2u = f

u
∣∣
∂Ω = g

(3.7)

as preconditioner we use {
∆u+ κ2u(1 + εi) = f

u
∣∣
∂Ω = g

for 0 < ε < 1. This preconditioner has two main features:

• The larger is ε the faster is the computation of the action of preconditioner.

• The smaller is ε the better is the approximation of the solution provided by
the preconditioner.

In practice, small values of ε lead to a better preconditioner which will let the
method we are using, e.g., GMRES, converge faster. On the other hand, small
values of ε makes the process of computing the action of the preconditioner more
expensive. Therefore, the value of ε is a trade-off between these two scenarios.
The quality of this preconditioner is described by the following theorem. For a
more formal formulation see [134, Theorem 1.4].

Theorem 3.1. Under the technical hypothesis in [134, Theorem 1.4], we consider
the discretized problem obtained with FEM by using elements that have radius such
that hκ < 1. Let A the matrix associated with the linear system and let Aε the
matrix of the preconditioner, then

‖I −A−1
ε A‖2 ≤ Cε (3.8)

where C is a problem-dependent constant, which depends on Ω and κ.

Note that the hypothesis hκ < 1 guarantees that all the oscillations of the
solutions are resolved. In the mono-dimensional case we analyzed before, with a
finite difference discretization, we obtained hκ < 2π.

46 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

The proof of the Theorem 3.1 is based on FEM arguments. Rather then
proving this result, which is very general, we verify that similar results can be
obtained in a simplified case with FD. We consider the mono-dimensional problem,

u′′(x) + κu(x) = f(x)
u(0) = 0
u(1) = 0

and let Au = f be the linear system obtained by a FD discretization. The
eigenvalues have a closed expression given in [123, ss. 3.4–3.5], which is

λk = κ2 − 4
h2 sin

(
jπ

2(n+ 1)

)
j = 1, . . . , n (3.9)

whereas for the preconditioned system

λεk = κ2(1 + εi)− 4
h2 sin

(
jπ

2(n+ 1)

)
j = 1, . . . , n (3.10)

We can now study the spectrum for this simplified problem in order to understand
the basic concepts. In particular we get

‖I −A−1
ε A‖2 ≈ 1− λmax

(
A−1
ε A

)
. (3.11)

and by using (3.9) and (3.10) we get, for ε < 1, the following first order approxi-
mation

λj
λεj
≈ κ2

κ2(1 + εi) = 1− ε+O(ε2) (3.12)

Observation 3.2. If we choose ε = 1, the eigenvalues of A−1
ε A are in the circle

centered in 1/2 with radius 1/2. This means that GMRES converges slowly, see
Corollary 1.4.

3.4 Perfectly Matched Layers
In this section we consider the Helmholtz equation (3.13) in the unbounded domain
Rd, d = 2, 3, with source f , and radiation condition, also called Sommerfeld
condition, given by

∆u(x) + ω2

c2(x)u(x) = f(x) in Rd (3.13)

lim
|x|→∞

|x| d−1
2

(
∂

∂|x| − iω
)
u = 0 . (3.14)

3.4. PERFECTLY MATCHED LAYERS 47

The Sommerfeld condition (3.14) implies that the wave propagates from the source
outwards. This condition is sufficient in order to have uniqueness of the solution.
We assume that supp(f) ⊂ D := [0, 1]d, i.e., the source is limited to the unit
square D, and we are only interested in the solution in this domain. A way to
transform (3.13) in an equivalent PDE with bounded domain is by replacing the
boundary conditions (3.14) at infinity with absorbing boundary conditions (ABCs)
in the boundary of D. This can be done with the method of perfectly matched
layers (PML) which we briefly recall.

Computational framework of PML
The idea of PML consists of performing a change of variables in a way such that,
with respect to the new variables, the solution to (3.13) decays exponentially
to zero for |x| → ∞. Dirichlet homogeneous boundary conditions can therefore
efficiently be used to set the problem with respect the new variables. We present
the PML for a bi-dimensional problem, i.e., d = 2 in (3.13).
We denote by (z1, z2) the new variables, where zj := xj + ig(xj) for j = 1, 2 and
where g is a given function specified later. Observe that we extended the field of
the variables to the complex numbers. In order to perform the change of variable
in (3.13) we observe that

∂u

∂zj
=
(

1 + i
dg
dxj

)−1
∂u

∂xj
(3.15)

Motivated by this expression, the function g is typically selected such that

dg
dx = σ(x)

ω
,

where σ(x) is a function which is zero in the domain of interest for (3.13), and
positive in a small band until the boundary. One way to select this function is the
following

σ(t) =


C
η

(
t−η
η

)2
0 ≤ t ≤ η

C
η

(
t−1+η
η

)2
1− η ≤ t ≤ 1

0 otherwise

where η is a small number, e.g. 10−6, which is application dependent. With this
reasoning, equation (3.15) can be written as

∂u

∂zj
=
(

1 + i
σ(xj)
ω

)−1
∂u

∂x
= s(xj)

∂u

∂xj

48 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

where s(xj) is defined accordingly. We can therefore write (3.13), with respect to
the new variables as[(

s1
∂

∂z1

)(
s1

∂

∂z1

)
u(z) +

(
s2

∂

∂z2

)(
s2

∂

∂z2

)
u(z)

]
+ ω2

c2(x)u(z) = f(z)

(3.16)

It is possible to show that the solution to (3.16) decays exponentially to zero for
z outsize of supp(f). Therefore, in order to have a well defined problem which
can be numerically solved, we impose homogeneous Dirichlet boundary conditions
on (3.16). In conclusion, the PML gives the following problem[(

s1
∂

∂z1

)(
s1

∂

∂z1

)
u(z) +

(
s2

∂

∂z2

)(
s2

∂

∂z2

)
u(z)

]
+ ω2

c2(x)u(z) = f(z)

(3.17)
u(z) = 0 for z ∈ ∂D (3.18)

Remark 3.3. The solution to (3.18) is a an approximation to the solution to the
original problem (3.13) with boundary conditions (3.14) in the set supp(f). This
is justified by two main facts:

• the solution to (3.16) decays to zero exponentially outside of supp(f),

• g(x) = 0 for x ∈ supp(f), namely the new variables correspond with the old
ones in the domain of interest.

In the rest of this section we will only consider the PML reformulation (3.18)
but we will denote the variables with x (and not z which was used in the derivation).
We will also use the following nomenclature: we will call layers of the PML the
regions where {x ∈ D ∧ σ(x) > 0}; we will also assume that supp f(x) does not
intersect such regions.

3.5 Sweeping factorization

Symmetrization and discretization
The equation (3.16) is not symmetric, but we can make it symmetric by dividing
by s1(x)s2(x)(

∂

∂x1

(
s1
s2

∂

∂x1

)
u(x) + ∂

∂x2

(
s2
s1

∂

∂x2

)
u(x)

)
+ ω2

s1(x)s2(x)c2(x)u(x) = f(x)

(3.19)

3.5. SWEEPING FACTORIZATION 49

We now discretize this equation with finite differences. More precisely, by using
the five point stencil for the second derivative, we get

1
h2

(
s1
s2

)
i+ 1

2 ,j

ui+1,j + 1
h2

(
s2
s1

)
i,j+ 1

2

ui,j+1+

1
h2

(
s1
s2

)
i− 1

2 ,j

ui−1,j + 1
h2

(
s2
s1

)
i,j− 1

2

ui,j−1−[
1
h2

(
s1
s2

)
i+ 1

2 ,j

+ 1
h2

(
s1
s2

)
i− 1

2 ,j

+ 1
h2

(
s2
s1

)
i,j+ 1

2

+

1
h2

(
s2
s1

)
i,j− 1

2

− ω2

(s1s2)i,jc2i,j

]
ui,j = fi,j

The discretization points are n+ 2 in each direction, by taking h = 1
n+1 , but we

only consider the n internal ones, which consequently have coordinates (ih, jh),
i, j = 1, . . . , n. We order the unknowns ui,j , and also the known function f , by
rows, from bottom to top:

ũm = (u1,m, u2,m, . . . , un,m)T , f̃m = (f1,m, f2,m, . . . , fn,m)T

u =


ũ1
ũ2
...
ũn

 , f =


f̃1
f̃2
...
f̃n


and we get the system

Au = f

where

A =


A1,1 A1,2

A2,1 A2,2
. . .

. An−1,n
An,n−1 An,n

 (3.20)

and Am,m is tridiagonal and Am,m−1 = ATm−1,m is diagonal.

Matrix factorizations
The sweeping factorization is a block LDLT factorization, and to understand what
it means let’s take a step back.

50 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

Theorem 3.4 ([140, Theorem 4.1.3]). If A ∈ Rn×n is symmetric and the principal
submatrix A(1 : k, 1 : k) is nonsingular for k = 1 : n− 1, then there exists a unit
lower triangular matrix L and a diagonal matrix D := diag(d1, d2, . . . , dn) such
that A = LDLT , and the factorization is unique.

Proof. From the LU-factorization A = LU , the matrix L−1AL−T = UL−T is
symmetric and upper triangular, so it must be diagonal. Then by setting D =
UL−T the factorization is proved, and the uniqueness comes from the uniqueness
of the LU factorization.

Definition 3.5 (Schur complement). Given a (p+ q)× (p+ q) block matrix

M =
(
A B
C D

)
Suppose D invertible; then the Schur complement of the block D of the matrix M
is the p× p matrix

M/D := A−BD−1C

Suppose A invertible; then the Schur complement of the block A of the matrix M
is the q × q matrix

M/A := D − CA−1B

Definition 3.6 (Block LDLT decomposition). If A, B and D are symmetric,(
A B
B D

)
=
(

I 0
BA−1 I

)(
A 0
0 D −BA−1B

)(
I (BA−1)T
0 I

)
=
(

I 0
BA−1 I

)(
A 0
0 D −BA−1B

)(
I 0

BA−1 I

)T
Let’s notice that D −BA−1B is the Schur complement of the block A.

Sweeping factorization
We now consider a specific block LDLT factorization which we refer to as sweeping
factorization. This factorization is defined algorithmically. We start from the first
row block row

A = L1


S1 0
0 S2 A2,3

A3,2
.
.

LT1

3.5. SWEEPING FACTORIZATION 51

where S1 = A1,1 and S2 = A2,2 − A2,1S
−1
1 A1,2 is the Schur complement of the

first block A1,1 = S1, and

L1 =


I 0

A2,1S
−1
1 I 0

0 I
. . .

.


Repeating the process iteratively, we get

A = L1L2 · · ·Ln−1


S1

S2
. . .

Sn

LTn−1L
T
n−2 · · ·LT2 LT1

where Sm = Am,m −Am,m−1S
−1
m−1Am−1,m, m = 2, 3, . . . , n, and Lm is such that

the block (m+ 1,m) is Am+1S
−1
m , the diagonal blocks (k, k) are I, and the others

are zeros. Observe now that the solution to the linear system defined by the
matrix (3.20) after the block LDLT factorization can be computed as

u =
(
LT1
)−1 (

LT2
)−1 · · ·

(
LTn−1

)−1


S−1

1
S−1

2
. . .

S−1
n

L−1
n−1L

−1
n−2 · · ·L−1

1 f

In Algorithm 6 is summarized the procedure for computing the sweeping factor-
ization whereas in Algorithm 7 is summarized the procedure for solving the linear
system given the sweeping factorization.

The complexity for computing the sweeping factorization is O(n4) = O(N2)
and the complexity for solving the linear system (given the sweeping factorization)
is O(n3) = O(N 3

2).
By following this reasoning, a first approach for deriving a preconditioner

is the following. We approximate the sweeping factorization A = LDLT by
approximating the Schur complements Sm by S̃m in a way that the computation of
S̃m has lower complexity (see Problem 3.19). Let A ≈ L̃D̃L̃T be the approximate
sweeping factorization, we consider the preconditioner P = L̃−1D̃−1L̃−T . The
action of the preconditioner can be efficiently computed by using Algorithm 7.
The quality of the preconditioner depends on how close the approximated sweeping
factorization is to the exact sweeping factorization.

Decay of the rank of off-diagonal blocks
The diagonal blocks A1,1 to Am,m of the matrix (3.20) are the discretization of
Helmholtz operator, with zero boundary conditions, with respect to the variable

52 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

Algorithm 6: Construction of the sweeping factorization (without hier-
archical matrix representation)

input : A matrix A ∈ Rn2×n2 = RN×N
output : Block-diagonal LDLT factorization components Sm and their

inverse Tm
1 S1 = A1,1
2 T1 = S−1

1
for m = 2, . . . , n do

3 Sm = Am,m −Am,m−1Tm−1Am−1,m
4 Tm = S−1

m

end
5 return Sm and Tm for m = 1, . . . , n

x2. The inverse of the matrix A corresponds to the discretization of the Green’s
function of the Helmholtz operator with zero boundary conditions. This matrix
has a very special property which is described by the following theorem.

Theorem 3.7. Let G(x, y) be the Green’s function of the Helmholtz operator with
zero boundary conditions. Let

I = (i1, . . . , ik) J = (j1, . . . , jk) such that
is, js ∈ {1, . . . , n} for s = 1, . . . , k and I ∩ J = ∅

Then the matrix G̃ = {G(xit , yjs)}kt,s=1 can be approximated by a low rank matrix.
More precisely, ∀ε > 0 ∃R ∈ N, V,W ∈ Rk×R such that ‖G− VWT ‖ < ε.

Let G = {G(xi, yj)}ni,j=1 be the matrix obtained by discretizing the Green’s
function, then the above theorem states that the submatrices of G that do not
cross the diagonal can be approximated by low rank matrices.

A direct implication is that, even if the matrices Tm = S−1
m are dense, the

off-diagonal blocks have numerically low rank (see Problem 3.16) and can be
approximated in the hierarchical matrix framework as discussed in the next
section.

Sweeping factorization in the Hierarchical matrix framework
Hierarchical matrices are used as data-sparse approximations/representation of non-
sparse matrices. A matrix is hierarchical if all the submatrices that do not contain
elements from the diagonal are low rank. These matrices can be efficiently stored,
namely it is not need to store all the entries of the matrix but only the low-rank
terms. There are several different ways to store hierarchical matrices. Operations

3.5. SWEEPING FACTORIZATION 53

Algorithm 7: Computation of u = A−1f using the sweeping factorization
(without hierarchical matrix representation)

input : Sweeping factorization of A and right hand side f
output : Solution u = A−1f
for m = 1, . . . , n do

1 um = fm
end
for m = 1, . . . , n− 1 do

2 um+1 = um+1 −Am+1,m(Tmum)
end
for m = 1, . . . , n do

3 um = Tmum
end
for m = n− 1, . . . , 1 do

4 um = um − Tm(Am,m+1um+1)
end

5 return um for m = 1, . . . , n

between hierarchical matrices, such as matrix-matrix addition/subtraction, matrix-
vector operations etc., can be efficiently performed.

The final computational complexity of the preconditioner calculation becomes,
in the framework of hierarchical matrices, O(R2N logN) for the building and
O(RN logN) for the computation. This is much less expensive than the direct
methods when R is small, both in terms of time and storage.

Let S̃m and T̃m be approximations of Sm and Tm in the hierachical matrix
representation framework. The modified algorithms to construct the sweep-
ing factorization and construct the solution u are shown in the following para-
graph. The special operations used in the framework are the following: hadd and
hsub are addition and subtraction respectively, their complexity is O(R2n logn);
hmatvec is matrix-vector multiplication, O(Rn logn); hmul is matrix multiplica-
tion, O(R2n log2 n); hdiagmul is multiplication between a matrix and a block
diagonal matrix, O(Rn logn); hinv is matrix inversion, O(R2n log2 n).

The cost of algorithm 8 is O(R2n2 log2 n) = O(R2N log2N), and the cost of
the computation of u, algorithm 9, is O(Rn2 logn) = O(RN logN). Algorithm
9 defines an operator which approximates the inverse of the discrete Helmholtz
operator A; even if its approximation is not accurate, it can be used as a pre-
conditioner, especially when considering R small, when the cost is much smaller
compared to direct methods.

54 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

Algorithm 8: Construction of the sweeping factorization (with hierar-
chical matrix representation)

input : A matrix A ∈ Rn2×n2 = RN×N
output : Approximation in the hierarchical representation of

block-diagonal LDLT factorization components, S̃m and their
inverse T̃m

1 S̃1 = A1,1
2 T̃1 = hinv(S̃1)

for m = 2, . . . , n do
3 S̃m = hsub(Am,m, hdiagmul(Am,m−1, hdiagmul(T̃m−1, Am−1,m)))
4 T̃m = hinv(S̃m)

end
5 return S̃m and T̃m for m = 1, . . . , n

Algorithm 9: Computation of u ≈ A−1f using the sweeping factorization
(with hierarchical matrix representation)

input : Sweeping factorization of A and right hand side f
output : Solution u = A−1f
for m = 1, . . . , n do

1 um = fm
end
for m = 1, . . . , n− 1 do

2 um+1 = um+1 −Am+1,mhmatvec(T̃m, um)
end
for m = 1, . . . , n do

3 um = hmatvec(T̃m, um)
end
for m = n− 1, . . . , 1 do

4 um = um − hmatvec(T̃m, Am,m+1um+1)
end

5 return um for m = 1, . . . , n

3.6. PROBLEMS 55

3.6 Problems
Problem 3.1. Properties of the solution of the 1d-Helmholtz equation
Consider the mono-dimensional homogeneous Helmholtz equation

u′′(x) + κ2u(x) = 0
u(0) = u0

u(1) = u1

(3.21)

where κ ∈ R.

(a) Compute the analytic solutions and show that they are oscillating functions.
More precisely the larger is κ the more the solution oscillates.

(b) Solve this problem in MATLAB and illustrate with plots for different values
of κ your argument in (a).

(c) What happens if κ ∈ C? What happens if κ is purely imaginary?

Problem 3.2. Damping effect
Consider the mono-dimensional Helmholtz equation

u′′(x) + κ2(1 + εi)2u(x) = 0
u(0) = 1
lim
x→∞

u(x) = 0

where κ ∈ R.

(a) Show that for ε = 0 the solution is an oscillatory function such that the
larger is κ the more the function oscillates.

(b) Show that for ε > 0 the solution is damping. More precisely show that
the solution can be written as u(x) = f(x)gε(x) where f(x) is a periodic
function and lim

x→∞
gε(x) = 0.

(c) Show that the larger is ε the faster is the damping. More precisely show
that if ε1 < ε2 then for a fixed x in the domain we have |uε1(x)| < |uε2(x)|.

Problem 3.3. Two grid preconditioner
Consider the mono-dimensional problem

u′′(x) + κ2(1 + εi)u(x) = 0
u(0) = 10
u(1) = 10

(3.22)

By discretizing the problem with FD with n discretization points, we obtain the
linear systems Anun = bn. We want to solve this linear system with GMRES
combined with the preconditioner that is described by the following procedure:

56 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

• Discretize the problem by using half of the discretization points

• Solve An/2un/2 = bn/2

• Approximate un by interpolating un/2
This procedure is implemented in the following script
n =10000; xx= linspace (0,1,n); h=xx (2) -xx (1);
e = ones(n ,1); I= speye (n);
kk =100000; ee =0.5;
kk=kk+ee*kk *1i;
D = spdiags ([e -2*e e], -1:1, n, n);
A = D./(hˆ2)+kk*I;
A(1 ,:) =0; A(1 ,1) =1;
A(end ,:) =0; A(end ,end)=1;
b=ones(n ,1); b(1) =10; b(end)=10;

P=@(u) precond (u,n/2,xx ,kk); TOL =1e -12; MAXIT =100;
[X,FLAG ,RELRES ,ITER , RESVEC]= gmres (A,b ,[] ,TOL ,MAXIT ,P);

semilogy (RESVEC ./n)

function uu2= precond (b,n,xx2 ,kk)
xx1= linspace (0,1,n); h=xx1 (2) -xx1 (1);
e = ones(n ,1); I= speye (n);
D = spdiags ([e -2*e e], -1:1, n, n);
A = D./(hˆ2)+kk*I;
A(1 ,:) =0; A(1 ,1) =1;
A(end ,:) =0; A(end ,end)=1;
b = interp1 (xx2 ,b,xx1).’;
uu=A\b;
uu2 = interp1 (xx1 ,uu ,xx2).’;

end

(a) Run the script and generate plots for different values of the parameter kk in
the script (that corresponds to κ2) with ε = 1/2. How does the convergence
of GMRES depend on the magnitude of kk?

(b) Analyze the results obtained in the previous task with the theory presented
in this chapter. Why does this preconditioner work?

(c) Try to use different values for ee in the script (that corresponds to ε). When
does the preconditioner work better? Why?

Problem 3.4. Solve in MATLAB (or FEniCS) the following Helmholtz equation

∆u(x, y) + (1 + εi)κ2u(x, y) = 1 (x, y) ∈ [0, 1]2

u(x, y) = 0 (x, y) ∈ ∂[0, 1]2

(a) Fix ε = 0 and plot the solution for different values of κ. How do the
oscillations of u(x, y) depend on κ?

3.6. PROBLEMS 57

(b) Fix κ large enough and plot the solution for different values of 0 < ε < 1. Is
ε introducing a damping? Notice that the solution is a complex function.
You can plot in in MATLAB as surf(abs(U)).

(c) Analyze the results and relate them to the mono-dimensional case.

Problem 3.5. The following Python script uses FEniCS to discretize the
Helmholtz equation.
from __future__ import print_function
from FEniCS import *
from scipy .io import savemat
import matplotlib . pyplot as plt

parameters [’linear_algebra_backend ’] = " Eigen "
parameters [’reorder_dofs_serial ’] = False

Create mesh and define function space
mesh = UnitSquareMesh (40 , 40)
V = FunctionSpace (mesh , ’P’, 1)

Define boundary condition
u_D = Expression (’1’, degree =1)

def boundary (x, on_boundary):
return on_boundary

bc = DirichletBC (V, u_D , boundary)

Define variational problem
k = 20;
u = TrialFunction (V)
v = TestFunction (V)
f = Constant (-6.0)
a = -dot(grad(u), grad(v))*dx+k**2* dot(u,v)*dx
L = f*v*dx

Compute solution
u = Function (V)
solve (a == L, u, bc)

Uncomment the following code to plot solution and the mesh
#plot(u)
#plot(mesh)
#plt.show ()

Assemble matrix
A, b = assemble_system (a, L, bc);
rows ,cols ,vals = as_backend_type (A).data () # Get CSR data
A = as_backend_type (A). sparray ()
b = as_backend_type (b). get_local ()
savemat (’Helmholtz .mat ’, {’A’: A,’b’:b})

58 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

(a) Which PDE is this script discretizing? Specify domain, right-hand side,
boundary conditions, etc.

(b) Run the script. A MATLAB file will be generated (matrix A and vector u).
Solve the linear systems in MATLAB and plot the solution. You need to
reshape the solution.

Problem 3.6. Helmholtz equation and Galerkin optimality conditions.
Scheme the article [202] and try to understand why, and in which sense, the Galerkin
method for the Helmholtz equation, with real wavenumber, is not optimal. Does
the situation change if the wavenumber is complex? You can follow the lead of
the following questions in order to find key words in the paper.

(a) What is the weak formulation of the Helmholtz equation?

(b) What does it means that a bilinear form a(u, v) is coercive? Is the bilinear
form involved in the Helmholtz equation coercive?

(c) What does it mean that a Galerkin method is quasi-optimal? Under which
conditions a Galerkin method (like FEM) is quasi-optimal?

(d) What is the weak formulation of the Helmholtz equation if we introduce
a complex shift? Is now the aε(u, v) coercive? Is the Galerkin method
quasi-optimal?

Problem 3.7. Consider the FD discretization of the following eigenvalue problem

u′′(x) + k2(1 + εi)u(x) = λu(x)
u(0) = 0, u(1) = 0

Prove (or show with MATLAB) that for ε = 1, the eigenvalues lie in the circle
centered in 1/2 with radius 1/2.

Problem 3.8. Laplace preconditioner for the Helmholtz equation.
Consider Problem 3.5, where the Python script, by using FEniCS, generates a
FEM-discretization of a Helmholtz equation on the unit square. We consider
the following preconditioner. With a regular FD, the Laplace equation with
homogeneous Dirichlet boundary conditions can be written as a Lyapunov equation,
i.e. DU+UD = B, where D is the FD matrix that discretizes the second derivative.
Lyapunov equations can be efficiently solved with specialized methods, which are
implemented in MATLAB in the function lyap. Compare the convergence of
GMRES with and without preconditioner and test different values of κ (change it
in the Python script).

Problem 3.9. Is a fine mesh needed for solving with FEM the Helmholtz equation
with large κ?

3.6. PROBLEMS 59

Let us consider the 1D Helmholtz equation

u′′(x) + κ2u(x) = 0, (3.23)
u(0) = 1, u(1) = 0. (3.24)

Write a Python script that solves this problem using FEniCS. Fix κ = 100 (highly
oscillatory solution) but use only n = 10 nodes. Test different degrees for the basis
function.1

Problem 3.10. Consider the mono-dimensional Helmholtz equation
u′′(x) + κ2u(x) = 0
u(0) = u0

u(1) = u1

We know that the larger is Reκ the more the solution is oscillating, the larger is
Im κ, the faster the solution is damping. Consider the limit case Reκ = 0, which
is tipically not fulfilled in the applications. Discuss the features of the analytic
solution of this PDE and explain which iterative solvers are efficient for solving
the discretized problem. Are the classical methods, e.g. Jacobi, a good option?

Problem 3.11. The PML is applied in such a way to make the problem symmetric
with respect to the variables x1 and x2.

(a) Does the symmetry with respect to the variables guarantee the symmetry of
the discretized system?

(b) Is the symmetry of A necessary in the sweeping factorization?

Problem 3.12. Prove that the A = LDMT decomposition becomes A = LDLT

if A is symmetric.

Problem 3.13. Complete the following code for the implementation of the naive
sweeping factorization. Discuss the computational complexity, and explain what
could be exploited to make it faster, and show and example in which this exploit
would work (not necessarily in full generality, you can take further assumptions).
S=A(1:n ,1:n);
Tm =...;
for m=2:n

S=A((1:n)+(m -1)*n ,(1:n)+(m -1)*n) -...* Tm *...;
Tm =...;
T((1:n)+(m -1)*n ,(1:n)+(m -1)*n)=Tm;

end

1In FEM there are two paramenters: h is the size of the elements and p is the degree of the
polynomials which form the basis functions. Typically one chooses a small value for h in order
to catch all the oscillations of the solution. In this problem we increase p instead.

60 CHAPTER 3. PRECONDITIONING FOR HELMHOLTZ EQUATION

Problem 3.14. Complete the following code for the computation of the solution
Au = b using the sweeping factorization, i.e. assuming is available the factoriza-
tion A = LDLT . Then compute the complexity, and propose changes to avoid
redundant computations in the loops.
for m=1:n

u((1:n)+(m -1)*n)=f((1:n)+(m -1)*n);
end
for m=1:n -1

u((1:n)+(m)*n)=u((1:n)+(m)*n) -...
end
for m=1:n

u((1:n)+(m -1)*n) =...* u((1:n)+(m -1)*n);
end
for m=...

u((1:n) +(...) *n)=u((1:n)+(m -1)*n) -...
T((1:n)+(m -1)*n ,(1:n)+(m -1)*n)*...

end

Problem 3.15. Explain the principle behind the sweeping factorization, and why
is theoretically the ordering important in the successful speed-up of the algorithm.

Problem 3.16. Using the naive sweeping factorization building algorithm, see
Problem 3.13, check that the off-diagonal blocks of the matrices Tm have numeri-
cally low rank.

Problem 3.17. Hierarchical matrices are the key of the sweeping preconditioning
approaches. We now consider another class of matrices, often referred to as
semi-separable matrices, and show that similar properties are fulfilled.

(a) Let us consider

M =
(
A uvT

uvT B

)
where u, v ∈ Rn and A ∈ Rn×n. Compute a block LDLT factorization.
Compute the complexity of the block LDLT factorization assuming that A
is sparse and solving a linear system with A has complexity O(n). We keep
the assumption regarding the sparsity of A for all the following problems.

(b) Let consider the matrix

M =
(

A UV T

UV T B

)
where U, V ∈ Rn×k. Compute a block LDLT factorization. Compute the
complexity of the block LDLT factorization.

3.6. PROBLEMS 61

(c) Consider the matrix

M =
(
A E
E B

)
where E ∈ Rn×n. Compute a block LDLT factorization. Assume that
the singular values of E have a fast decay, i.e. σi(E) < 2−i. Compute
an approximation L̃D̃L̃T of the block LDLT factorization such that ‖A−
L̃D̃L̃T ‖ < 10−16. Derive the complexity for computing the approximation
L̃D̃L̃T .

Problem 3.18. Give the definition and few examples of hierarchical matrices.
Explain the advantages that this structure gives.

Problem 3.19. In the sweeping preconditioner approach it is needed to solve
linear systems with the matrices Sj in order to compute the Schur complement.
See Step 4 in Algorithm 6. Use the code in Problem 3.13 to construct the matrix S5.
Study the structure of the matrix S5 and test the peformance of the preconditioner
P which contains the diagonal part of S5.

Problem 3.20. Hierarchical matrices arise in discretization of PDEs and operators
(see Theorem 3.7). Give an example of function G(x, y) such that its discretization
matrix, defined as A = [G(xi, yj)]ni,j=1, is hierarchical, where {xi, yj} is a uniform
discretization of a subset of the support of G.

